Wu Tian, Ren Xinglong, Qu Zhengkang, Jacobs Ian E, Zhang Lu, Fukui Naoya, Chen Xin, Nishihara Hiroshi, Sirringhaus Henning
Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge, CB3 0US, UK.
Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki Noda-shi, Chiba-ken, 278-8510, Japan.
Adv Mater. 2025 Aug;37(32):e2500164. doi: 10.1002/adma.202500164. Epub 2025 Jun 4.
Coordination nanosheets (CONASHs) or conjugated metal organic frameworks (MOFs) with distinctive metal-organic bonding structures exhibit promise for electronics, sensing, and energy storage. Porous Nickel-Benzene hexathiol complex (Ni-BHT) with noteworthy conductivity was first reported a decade ago, and recent synthetic modifications produced non-porous Ni-BHT with enhanced conductivity (≈50 S cm). Here the charge transport physics of such non-porous Ni-BHT films are studied with even higher conductivity (≈112 S cm). In contrast to the thermally activated electrical conductivity, thermoelectric measurements suggest an intrinsic metallic nature of Ni-BHT. It is shown that it is possible to tune the Fermi level and carrier polarity in Ni-BHT by electrolyte gating; gating is initially governed by the formation of an interfacial, electric double layer and then evolves into an electrochemical (de)doping process. These findings not only contribute to a deeper understanding of charge transport in CONASHs, but also show that Fermi level tuning is an effective approach for enhancing the thermoelectric performance of CONASHs.
具有独特金属-有机键结构的配位纳米片(CONASHs)或共轭金属有机框架(MOFs)在电子、传感和能量存储方面展现出前景。具有显著导电性的多孔镍-苯六硫醇配合物(Ni-BHT)早在十年前就首次被报道,最近的合成改进产生了具有更高导电性(≈50 S/cm)的无孔Ni-BHT。在此,对具有更高导电性(≈112 S/cm)的此类无孔Ni-BHT薄膜的电荷输运物理进行了研究。与热激活电导率不同,热电测量表明Ni-BHT具有本征金属性质。结果表明,通过电解质门控可以调节Ni-BHT中的费米能级和载流子极性;门控最初由界面电双层的形成控制,然后演变成电化学(去)掺杂过程。这些发现不仅有助于更深入地理解CONASHs中的电荷输运,还表明费米能级调节是提高CONASHs热电性能的有效方法。