Department of Orthopaedics, University of Utah, Salt Lake City, Utah, United States of America.
Department of Bimedical Engineering, University of Utah, Salt Lake City, Utah, United States of America.
PLoS One. 2020 Nov 9;15(11):e0242005. doi: 10.1371/journal.pone.0242005. eCollection 2020.
Transhumeral percutaneous osseointegrated prostheses provide upper-extremity amputees with increased range of motion, more natural movement patterns, and enhanced proprioception. However, direct skeletal attachment of the endoprosthesis elevates the risk of bone fracture, which could necessitate revision surgery or result in loss of the residual limb. Bone fracture loads are direction dependent, strain rate dependent, and load rate dependent. Furthermore, in vivo, bone experiences multiaxial loading. Yet, mechanical characterization of the bone-implant interface is still performed with simple uni- or bi-axial loading scenarios that do not replicate the dynamic multiaxial loading environment inherent in human motion. The objective of this investigation was to reproduce the dynamic multiaxial loading conditions that the humerus experiences in vivo by robotically replicating humeral kinematics of advanced activities of daily living typical of an active amputee population. Specifically, 115 jumping jack, 105 jogging, 15 jug lift, and 15 internal rotation trials-previously recorded via skin-marker motion capture-were replicated on an industrial robot and the resulting humeral trajectories were verified using an optical tracking system. To achieve this goal, a computational pipeline that accepts a motion capture trajectory as input and outputs a motion program for an industrial robot was implemented, validated, and made accessible via public code repositories. The industrial manipulator utilized in this study was able to robotically replicate over 95% of the aforementioned trials to within the characteristic error present in skin-marker derived motion capture datasets. This investigation demonstrates the ability to robotically replicate human motion that recapitulates the inertial forces and moments of high-speed, multiaxial activities for biomechanical and orthopaedic investigations. It also establishes a library of robotically replicated motions that can be utilized in future studies to characterize the interaction of prosthetic devices with the skeletal system, and introduces a computational pipeline for expanding this motion library.
经肱骨透皮骨整合假体为上肢截肢者提供了更大的运动范围、更自然的运动模式和增强的本体感觉。然而,假体的直接骨骼附着会增加骨折的风险,这可能需要进行修正手术或导致残肢丧失。骨骨折载荷与方向、应变率和载荷率有关。此外,在体内,骨骼承受多轴载荷。然而,骨-植入物界面的机械特性仍然是通过简单的单轴或双轴加载情况进行的,这些情况无法复制人类运动中固有的动态多轴加载环境。本研究的目的是通过机器人复制先进的日常生活活动的肱骨运动学,从而再现肱骨在体内经历的动态多轴加载条件,这些活动对于活跃的截肢者人群来说是典型的。具体来说,通过皮肤标记运动捕捉记录了 115 次跳跃杰克、105 次慢跑、15 次举重和 15 次内旋试验,在工业机器人上复制了这些试验,并使用光学跟踪系统验证了由此产生的肱骨轨迹。为了实现这一目标,实现了一个接受运动捕捉轨迹作为输入并输出工业机器人运动程序的计算管道,该管道经过验证并通过公共代码库提供。在这项研究中使用的工业操纵器能够以 95%以上的精度在特征误差范围内机器人复制上述试验,该特征误差存在于皮肤标记衍生的运动捕捉数据集中。这项研究证明了能够机器人复制人类运动的能力,这种运动能够再现高速、多轴活动的惯性力和力矩,用于生物力学和矫形研究。它还建立了一个机器人复制运动库,可用于未来的研究来描述假肢与骨骼系统的相互作用,并引入了一个用于扩展此运动库的计算管道。