Department of Biomedical Engineering, Lerner Research Institute, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic, 9500 Euclid Ave., Cleveland, Ohio, 44195.
Orthopaedic Trauma Institute, Navicent Health Physician Group, Macon, Georgia.
J Orthop Res. 2019 Dec;37(12):2601-2608. doi: 10.1002/jor.24439. Epub 2019 Aug 26.
A thorough understanding of anterior cruciate ligament (ACL) function and the effects of surgical interventions on knee biomechanics requires robust technologies and simulation paradigms that align with clinical insight. In vitro orthopedic biomechanical testing for the elucidation of ACL integrity doesn't have an established testing paradigm to simulate the clinical pivot shift exam on cadaveric specimens. The study aim was to develop a robotically simulated pivot shift that represents the clinical exam. An orthopedic surgeon performed a pivot shift on an instrumented ACL-deficient cadaver leg to capture 6 degree-of-freedom motion/loads. The same knee was mounted to the robot and the sensitivity of the motion/loading profiles quantified. Three loading profile candidates that generated positive pivot shifts on the instrumented knee were selected and applied to 7 ACL-intact/deficient specimens and resulted in the identification of a profile that was able to induce a positive pivot shift in all ACL-deficient specimens ( p < 0.001). The simulated shifts began at 22 ± 8° and ended at 33 ± 6° of flexion with the average magnitude of the shifts being 12.8 ± 3.2 mm in anterior tibial translation and 17.6 ± 4.3° in external tibial rotation. The establishment and replication of a robotically simulated clinical pivot shift across multiple specimens show the robustness of the loading profile to accommodate anatomical and experimental variability. Further evaluation and refinement should be undertaken to create a useful tool in evaluating ACL function and reconstruction techniques. Statement of clinical significance: Creation and successful demonstration of the simulated clinical pivot shift validates a profile for robotic musculoskeletal simulators to analyze ACL related clinical questions. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2601-2608, 2019.
全面了解前交叉韧带(ACL)的功能以及手术干预对膝关节生物力学的影响,需要与临床洞察力相匹配的强大技术和模拟范例。体外骨科生物力学测试用于阐明 ACL 完整性,但没有建立用于模拟尸体标本临床枢轴转移检查的既定测试范例。该研究的目的是开发一种代表临床检查的机器人模拟枢轴转移。一名矫形外科医生对配备有 ACL 缺陷的尸体腿进行了枢轴转移,以捕获 6 个自由度的运动/载荷。同一膝关节被安装到机器人上,并对运动/加载曲线的灵敏度进行了量化。选择了三个能够在配备的膝关节上产生阳性枢轴转移的加载曲线,并将其应用于 7 个 ACL 完整/缺陷标本,结果确定了一种能够在所有 ACL 缺陷标本上诱导阳性枢轴转移的曲线(p<0.001)。模拟转移在 22±8°开始,在 33±6°的屈曲结束,平均转移幅度为前胫骨平移 12.8±3.2mm 和外胫骨旋转 17.6±4.3°。在多个标本中建立和复制机器人模拟临床枢轴转移表明了加载曲线的稳健性,能够适应解剖学和实验变异性。应进一步进行评估和改进,以创建评估 ACL 功能和重建技术的有用工具。临床意义声明:成功创建和演示模拟临床枢轴转移验证了机器人运动系统模拟器用于分析 ACL 相关临床问题的一种方案。2019 年 Orthopaedic Research Society. 由 Wiley Periodicals, Inc. 出版。J Orthop Res 37:2601-2608,2019。