Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
J Am Chem Soc. 2020 Nov 18;142(46):19731-19744. doi: 10.1021/jacs.0c09832. Epub 2020 Nov 9.
Hydrogen-bonding interactions have been explored in catalysis, enabling complex chemical reactions. Recently, enantioselective nucleophilic fluorination with metal alkali fluoride has been accomplished with BINAM-derived bisurea catalysts, presenting up to four NH hydrogen-bond donors (HBDs) for fluoride. These catalysts bring insoluble CsF and KF into solution, control fluoride nucleophilicity, and provide a chiral microenvironment for enantioselective fluoride delivery to the electrophile. These attributes encouraged a H/F NMR study to gain information on hydrogen-bonding networks with fluoride in solution, as well as how these arrangements impact the efficiency of catalytic nucleophilic fluorination. Herein, NMR experiments enabled the determination of the number and magnitude of HB contacts to fluoride for thirteen bisurea catalysts. These data supplemented by diagnostic coupling constants give insight into how multiple H bonds to fluoride influence reaction performance. In dichloromethane (DCM-), nonalkylated BINAM-derived bisurea catalyst engages two of its four NH groups in hydrogen bonding with fluoride, an arrangement that allows effective phase-transfer capability but low control over enantioselectivity for fluoride delivery. The more efficient N-alkylated BINAM-derived bisurea catalysts undergo urea isomerization upon fluoride binding and form dynamically rigid trifurcated hydrogen-bonded fluoride complexes that are structurally similar to their conformation in the solid state. Insight into how the countercation influences fluoride complexation is provided based on NMR data characterizing the species formed in DCM- when reacting a bisurea catalyst with tetra--butylammonium fluoride (TBAF) or CsF. Structure-activity analysis reveals that the three hydrogen-bond contacts with fluoride are not equal in terms of their contribution to catalyst efficacy, suggesting that tuning individual electronic environment is a viable approach to control phase-transfer ability and enantioselectivity.
氢键相互作用在催化中得到了探索,使复杂的化学反应成为可能。最近,使用手性联萘酚衍生的双脲催化剂实现了金属碱金属氟化物的对映选择性亲核氟化,这些催化剂提供了多达四个 NH 氢键给体 (HBD) 与氟结合。这些催化剂将不溶性的 CsF 和 KF 溶解在溶液中,控制氟的亲核性,并为亲核氟向亲电试剂的对映选择性传递提供手性微环境。这些特性促使进行了 H/F NMR 研究,以获取有关溶液中氢键网络与氟相互作用的信息,以及这些排列如何影响催化亲核氟化的效率。在此,NMR 实验确定了 13 种双脲催化剂与氟形成氢键的数量和大小。这些数据与诊断偶合常数相结合,深入了解多个氢键对氟的影响反应性能。在二氯甲烷 (DCM-) 中,非烷基化的手性联萘酚衍生的双脲催化剂与氟形成两个氢键,这种排列允许有效的相转移能力,但对氟的对映选择性控制能力较低。更有效的 N-烷基化的手性联萘酚衍生的双脲催化剂在与氟结合时发生脲异构化,并形成动态刚性三分叉氢键氟配合物,其结构与在固态中的构象相似。基于 NMR 数据,提供了有关抗衡阳离子如何影响氟配合物形成的见解,这些数据用于描述在 DCM-中反应手性联萘酚衍生的双脲催化剂与四丁基氟化铵 (TBAF) 或 CsF 时形成的物种。结构活性分析表明,与氟形成的三个氢键接触在对催化剂功效的贡献方面并不相等,这表明调整单个电子环境是控制相转移能力和对映选择性的可行方法。