Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
J Am Chem Soc. 2022 Mar 16;144(10):4572-4584. doi: 10.1021/jacs.1c13434. Epub 2022 Mar 1.
Asymmetric catalytic azidation has increased in importance to access enantioenriched nitrogen containing molecules, but methods that employ inexpensive sodium azide remain scarce. This encouraged us to undertake a detailed study on the application of hydrogen bonding phase-transfer catalysis (HB-PTC) to enantioselective azidation with sodium azide. So far, this phase-transfer manifold has been applied exclusively to insoluble metal alkali fluorides for carbon-fluorine bond formation. Herein, we disclose the asymmetric ring opening of aziridinium electrophiles derived from β-chloroamines with sodium azide in the presence of a chiral bisurea catalyst. The structure of novel hydrogen bonded azide complexes was analyzed computationally, in the solid state by X-ray diffraction, and in solution phase by H and N/N NMR spectroscopy. With -isopropylated BINAM-derived bisurea, end-on binding of azide in a tripodal fashion to all three NH bonds is energetically favorable, an arrangement reminiscent of the corresponding dynamically more rigid trifurcated hydrogen-bonded fluoride complex. Computational analysis informs that the most stable transition state leading to the major enantiomer displays attack from the hydrogen-bonded end of the azide anion. All three H-bonds are retained in the transition state; however, as seen in asymmetric HB-PTC fluorination, the H-bond between the nucleophile and the monodentate urea lengthens most noticeably along the reaction coordinate. Kinetic studies corroborate with the turnover rate limiting event resulting in a chiral ion pair containing an aziridinium cation and a catalyst-bound azide anion, along with catalyst inhibition incurred by accumulation of NaCl. This study demonstrates that HB-PTC can serve as an activation mode for inorganic salts other than metal alkali fluorides for applications in asymmetric synthesis.
不对称催化叠氮化反应在获得手性含氮分子方面的重要性日益增加,但使用廉价的叠氮化钠的方法仍然很少。这鼓励我们对氢键相转移催化(HB-PTC)在叠氮化钠的对映选择性叠氮化中的应用进行详细研究。到目前为止,这种相转移机理仅应用于不溶性金属碱氟化物的碳-氟键形成。在此,我们公开了在手性双脲催化剂存在下,β-氯代胺衍生的氮鎓亲电试剂与叠氮化钠进行不对称开环反应。新型氢键叠氮复合物的结构通过计算、X 射线衍射和 H 和 N/N NMR 光谱在固态和溶液相中进行了分析。使用异丙基化的 BINAM 衍生的双脲,叠氮以三齿方式与所有三个 NH 键末端结合在能量上是有利的,这种排列让人想起相应的动态更刚性的三分叉氢键氟化物配合物。计算分析表明,导致主要对映体的最稳定过渡态显示出从氢键末端的叠氮阴离子进攻。在过渡态中保留了所有三个 H 键;然而,正如在不对称 HB-PTC 氟化反应中看到的那样,亲核试剂和单齿脲之间的 H 键沿着反应坐标明显伸长。动力学研究证实,手性离子对的周转率限制事件导致包含氮鎓阳离子和催化剂结合的叠氮阴离子的手性离子对,以及由于 NaCl 的积累而导致的催化剂抑制。这项研究表明,HB-PTC 可以作为除金属碱氟化物以外的无机盐的活化模式,用于不对称合成。