Suppr超能文献

基于图正则化技术的异质网络中小分子-miRNA 关联的识别。

Identification of Small Molecule-miRNA Associations with Graph Regularization Techniques in Heterogeneous Networks.

机构信息

College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China.

School of Computer Science, University of South China, Hengyang 421001, China.

出版信息

J Chem Inf Model. 2020 Dec 28;60(12):6709-6721. doi: 10.1021/acs.jcim.0c00975. Epub 2020 Nov 9.

Abstract

MicroRNAs (miRNAs) are significant regulators of post-transcriptional levels and have been confirmed to be targeted by small molecule (SM) drugs. It is a novel insight to treat human diseases and accelerate drug discovery by targeting miRNA with small molecules. Computational approaches for discovering novel small molecule-miRNA associations by integrating more heterogeneous network information provide a new idea for the multiple node association prediction between small molecule-miRNA and small molecule-disease associations at a system level. In this study, we proposed a new computational model based on graph regularization techniques in heterogeneous networks, called identification of small molecule-miRNA associations with graph regularization techniques (SMMARTs), to discover potential small molecule-miRNA associations. The novelty of the model lies in the fact that the association score of a small molecule-miRNA pair is calculated by an iterative method in heterogeneous networks that incorporates small molecule-disease associations and miRNA-disease associations. The experimental results indicate that SMMART has better performance than several state-of-the-art methods in inferring small molecule-miRNA associations. Case studies further illustrate the effectiveness of SMMART for small molecule-miRNA association prediction.

摘要

微小 RNA(miRNAs)是转录后水平的重要调控因子,已被证实可被小分子(SM)药物靶向。通过小分子靶向 miRNA 来治疗人类疾病和加速药物发现是一种新的见解。通过整合更多异构网络信息来发现新型小分子-miRNA 关联的计算方法为小分子-miRNA 和小分子-疾病关联在系统水平上的多个节点关联预测提供了新的思路。在这项研究中,我们提出了一种基于异构网络中图正则化技术的新计算模型,称为基于图正则化技术识别小分子-miRNA 关联(SMMARTs),以发现潜在的小分子-miRNA 关联。该模型的新颖之处在于,通过在异构网络中采用迭代方法计算小分子-miRNA 对的关联分数,该方法整合了小分子-疾病关联和 miRNA-疾病关联。实验结果表明,SMMART 在推断小分子-miRNA 关联方面的性能优于几种最先进的方法。案例研究进一步说明了 SMMART 对小分子-miRNA 关联预测的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验