College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China.
School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China.
Comput Biol Chem. 2024 Jun;110:108078. doi: 10.1016/j.compbiolchem.2024.108078. Epub 2024 Apr 20.
MicroRNAs (miRNAs) play a vital role in regulating gene expression and various biological processes. As a result, they have been identified as effective targets for small molecule (SM) drugs in disease treatment. Heterogeneous graph inference stands as a classical approach for predicting SM-miRNA associations, showcasing commendable convergence accuracy and speed. However, most existing methods do not adequately address the inherent sparsity in SM-miRNA association networks, and imprecise SM/miRNA similarity metrics reduce the accuracy of predicting SM-miRNA associations. In this research, we proposed a heterogeneous graph inference with range constrained L-collaborative matrix factorization (HGIRCLMF) method to predict potential SM-miRNA associations. First, we computed the multi-source similarities of SM/miRNA and integrated these similarity information into a comprehensive SM/miRNA similarity. This step improved the accuracy of SM and miRNA similarity, ensuring reliability for the subsequent inference of the heterogeneity map. Second, we used a range constrained L-collaborative matrix factorization (RCLMF) model to pre-populate the SM-miRNA association matrix with missing values. In this step, we developed a novel matrix decomposition method that enhances the robustness and formative nature of SM-miRNA edges between SM networks and miRNA networks. Next, we built a well-established SM-miRNA heterogeneous network utilizing the processed biological information. Finally, HGIRCLMF used this network data to infer unknown association pair scores. We implemented four cross-validation experiments on two distinct datasets, and HGIRCLMF acquired the highest areas under the curve, surpassing six state-of-the-art computational approaches. Furthermore, we performed three case studies to validate the predictive power of our method in practical application.
微小 RNA(miRNAs)在调节基因表达和各种生物过程中起着至关重要的作用。因此,它们已被确定为疾病治疗中小分子(SM)药物的有效靶点。异质图推理是预测 SM-miRNA 关联的一种经典方法,具有令人称赞的收敛精度和速度。然而,大多数现有的方法并没有充分解决 SM-miRNA 关联网络中的固有稀疏性,并且不准确的 SM/miRNA 相似性度量降低了预测 SM-miRNA 关联的准确性。在这项研究中,我们提出了一种基于范围约束 L 协同矩阵分解(HGIRCLMF)的异质图推理方法来预测潜在的 SM-miRNA 关联。首先,我们计算了 SM/miRNA 的多源相似性,并将这些相似性信息整合到一个综合的 SM/miRNA 相似性中。这一步提高了 SM 和 miRNA 相似性的准确性,确保了后续异质图推理的可靠性。其次,我们使用范围约束 L 协同矩阵分解(RCLMF)模型对缺失值的 SM-miRNA 关联矩阵进行预填充。在这一步中,我们开发了一种新颖的矩阵分解方法,增强了 SM 网络和 miRNA 网络之间 SM-miRNA 边的稳健性和形成性。接下来,我们利用处理后的生物信息构建了一个成熟的 SM-miRNA 异质网络。最后,HGIRCLMF 使用这个网络数据来推断未知的关联对分数。我们在两个不同的数据集上进行了四项交叉验证实验,HGIRCLMF 获得了最高的曲线下面积,超过了六种最先进的计算方法。此外,我们进行了三个案例研究,以验证我们方法在实际应用中的预测能力。