Suppr超能文献

来自. 的 6-磷酸-β-葡萄糖苷酶糖苷水解酶 1 酶的 X 射线结构、生物信息学分析和底物特异性

X-ray Structure, Bioinformatics Analysis, and Substrate Specificity of a 6-Phospho-β-glucosidase Glycoside Hydrolase 1 Enzyme from .

机构信息

Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.

São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil.

出版信息

J Chem Inf Model. 2020 Dec 28;60(12):6392-6407. doi: 10.1021/acs.jcim.0c00759. Epub 2020 Nov 9.

Abstract

In bacteria, mono- and disaccharides are phosphorylated during the uptake processes through the vastly spread transport system phosphoenolpyruvate-dependent phosphotransferase. As an initial step in the phosphorylated disaccharide metabolism pathway, 6-phospho-β-glucosidases and 6-phospho-β-galactosidases play a crucial role by releasing phosphorylated and nonphosphorylated monosaccharides. However, structural determinants for the specificity of these enzymes still need to be clarified. Here, an X-ray structure of a glycoside hydrolase family 1 enzyme from , hereafter known as BglH, was determined at 2.2 Å resolution, and its substrate specificity was investigated. The sequence of BglH was compared to the sequences of 58 other GH1 enzymes using sequence alignments, sequence identity calculations, phylogenetic analysis, and motif discovery. Through these various analyses, BglH was found to have sequence features characteristic of the 6-phospho-β-glucosidase activity enzymes. Motif and structural observations highlighted the importance of loop L8 in 6-phospho-β-glucosidase activity enzymes. To further affirm enzyme specificity, molecular docking and molecular dynamics simulations were performed using the crystallographic structure of BglH. Docking was carried out with a 6-phospho-β-glucosidase enzyme activity positive and negative control ligand, followed by 400 ns of MD simulations. The positive and negative control ligands were PNP6Pglc and PNP6Pgal, respectively. PNP6Pglc maintained favorable interactions within the active site until the end of the MD simulation, while PNP6Pgal exhibited instability. The favorable binding of substrate stabilized the loops that surround the active site. Binding free energy calculations showed that the PNP6Pglc complex had a substantially lower binding energy compared to the PNP6Pgal complex. Altogether, the findings of this study suggest that BglH possesses 6-phospho-β-glucosidase enzymatic activity and revealed sequence and structural differences between bacterial GH1 enzymes of various activities.

摘要

在细菌中,单糖和二糖在通过广泛分布的磷酸烯醇丙酮酸依赖性磷酸转移酶运输系统吸收过程中被磷酸化。作为磷酸化二糖代谢途径的初始步骤,6-磷酸-β-葡萄糖苷酶和 6-磷酸-β-半乳糖苷酶通过释放磷酸化和非磷酸化的单糖发挥关键作用。然而,这些酶的特异性的结构决定因素仍需要阐明。在此,确定了来自 的糖苷水解酶家族 1 酶(以下称为 BglH)的 X 射线结构,分辨率为 2.2 Å,并研究了其底物特异性。使用序列比对、序列同一性计算、系统发育分析和基序发现,将 BglH 的序列与 58 种其他 GH1 酶的序列进行了比较。通过这些各种分析,发现 BglH 具有 6-磷酸-β-葡萄糖苷酶活性酶的特征序列特征。基序和结构观察强调了环 L8 在 6-磷酸-β-葡萄糖苷酶活性酶中的重要性。为了进一步证实酶的特异性,使用 BglH 的晶体结构进行了分子对接和分子动力学模拟。对接使用 6-磷酸-β-葡萄糖苷酶酶活性阳性和阴性对照配体进行,随后进行 400 ns 的 MD 模拟。阳性和阴性对照配体分别为 PNP6Pglc 和 PNP6Pgal。PNP6Pglc 在整个 MD 模拟过程中保持与活性位点内的有利相互作用,而 PNP6Pgal 表现出不稳定性。底物的有利结合稳定了环绕活性位点的环。结合自由能计算表明,与 PNP6Pgal 复合物相比,PNP6Pglc 复合物具有显著更低的结合能。总之,这项研究的结果表明 BglH 具有 6-磷酸-β-葡萄糖苷酶酶活性,并揭示了具有各种活性的细菌 GH1 酶之间的序列和结构差异。

相似文献

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验