CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
Int J Biol Macromol. 2021 Feb 15;170:196-206. doi: 10.1016/j.ijbiomac.2020.12.128. Epub 2020 Dec 19.
Marine microalgae are promising sources of novel glycoside hydrolases (GHs), which have great value in biotechnical and industrial applications. Although many GH1 family β-glucosidases have been extensively studied, studies on β-glucosidases from microalgae are rare, and no structure of algal GH1 β-glucosidase has been reported. Here, we report the biochemical and structural study of a GH1 β-glucosidase BGLN1 from Nannochloropsis oceanica, an oleaginous microalga. Phylogenetic analysis of BGLN1, together with the known structures of GH1 β-glucosidases, has indicated that BGLN1 is branched at the root of the eukaryotic part of the phylogenetic tree. BGLN1 showed higher activity against laminaribiose compared to cello-oligosaccharides. Unlike most of the other GH1 β-glucosidases, BGLN1 is partially inhibited by metal ions. The crystal structure of BGLN1 revealed that BGLN1 adopts a typical (α/β)-barrel fold with variations in loops and N-terminal regions. BGLN1 contains extra residues at the N-terminus, which are essential for maintaining protein stability. BGLN1 has a more acidic substrate-binding pocket than other β-glucosidases, and the variations beyond the conserved -1 site determine the substrate specificity. These results indicate that GH enzymes from microalgae may have unique structural and functional features, which will provide new insight into carbohydrate synthesis and metabolism in marine microalgae.
海洋微藻是新型糖苷水解酶(GHs)的有前途的来源,它们在生物技术和工业应用中具有巨大的价值。尽管已经广泛研究了许多 GH1 家族的β-葡萄糖苷酶,但对微藻来源的β-葡萄糖苷酶的研究很少,并且尚未报道藻类 GH1 β-葡萄糖苷酶的结构。在这里,我们报道了来自海洋微藻拟南芥的 GH1 β-葡萄糖苷酶 BGLN1 的生化和结构研究。BGLN1 的系统发育分析,以及已知的 GH1 β-葡萄糖苷酶结构,表明 BGLN1 在系统发育树的真核部分的根部分支。BGLN1 对纤维二糖的活性比对纤维寡糖高。与大多数其他 GH1 β-葡萄糖苷酶不同,BGLN1 部分受到金属离子的抑制。BGLN1 的晶体结构表明,BGLN1 采用典型的(α/β)-桶状折叠,具有环和 N 端区域的变化。BGLN1 在 N 端含有额外的残基,这对于维持蛋白质稳定性是必不可少的。BGLN1 的底物结合口袋比其他β-葡萄糖苷酶更酸性,并且保守的-1 位以外的变化决定了底物特异性。这些结果表明,来自微藻的 GH 酶可能具有独特的结构和功能特征,这将为海洋微藻中的碳水化合物合成和代谢提供新的见解。