Suppr超能文献

基于转录组学的功能鉴定及碱性蛋白酶合成调控因子 AbrB 在地衣芽孢杆菌 2709 中的应用。

Transcriptome based functional identification and application of regulator AbrB on alkaline protease synthesis in Bacillus licheniformis 2709.

机构信息

School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.

出版信息

Int J Biol Macromol. 2021 Jan 1;166:1491-1498. doi: 10.1016/j.ijbiomac.2020.11.028. Epub 2020 Nov 7.

Abstract

Bacillus licheniformis 2709 is the major alkaline protease producer, which has great potential value of industrial application, but how the high-producer can be regulated rationally is still not completely understood. It's meaningful to understand the metabolic processes during alkaline protease production in industrial fermentation medium. Here, we collected the transcription database at various enzyme-producing stages (preliminary stage, stable phase and decline phase) to specifically research the synthesized and regulatory mechanism of alkaline protease in B. licheniformis. The RNA-sequencing analysis showed differential expression of numerous genes related to several processes, among which genes correlated with regulators were concerned, especially the major differential gene abrB on enzyme (AprE) synthesis was investigated. It was further verified that AbrB is a repressor of AprE by plasmid-mediated over-expression due to the severely descending enzyme activity (11,300 U/mL to 2695 U/mL), but interestingly it is indispensable for alkaline protease production because the enzyme activity of the null abrB mutant was just about 2279 U/mL. Thus, we investigated the aprE transcription by eliminating the theoretical binding site (TGGAA) of AbrB protein predicated by computational strategy, which significantly improved the enzyme activity by 1.21-fold and gene transcription level by 1.77-fold in the mid-log phase at a cultivation time of 18 h. Taken together, it is of great significance to improve the production strategy, control the metabolic process and oriented engineering by rational molecular modification of regulatory network based on the high throughput sequencing and computational prediction.

摘要

地衣芽孢杆菌 2709 是主要的碱性蛋白酶产生菌,具有巨大的工业应用潜力,但如何合理调控高产菌仍不完全清楚。了解工业发酵培养基中碱性蛋白酶生产过程中的代谢过程具有重要意义。在这里,我们收集了在不同产酶阶段(初始阶段、稳定阶段和下降阶段)的转录数据库,专门研究地衣芽孢杆菌碱性蛋白酶的合成和调控机制。RNA 测序分析显示,与多个过程相关的大量基因表达差异,其中与调节剂相关的基因受到关注,特别是与 AprE 合成相关的主要差异基因 abrB。由于酶活性严重下降(11300 U/mL 至 2695 U/mL),通过质粒介导的过表达进一步证实 AbrB 是 AprE 的抑制剂,但有趣的是,它对碱性蛋白酶的产生是必不可少的,因为缺失 abrB 突变体的酶活性仅约为 2279 U/mL。因此,我们通过消除计算策略预测的 AbrB 蛋白的理论结合位点(TGGAA)来研究 aprE 的转录,这在培养 18 小时的对数中期将酶活性提高了 1.21 倍,基因转录水平提高了 1.77 倍。总之,基于高通量测序和计算预测对调控网络进行合理的分子修饰,对提高生产策略、控制代谢过程和定向工程具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验