Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria.
Centre for Synthetic Biology, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium.
Curr Opin Chem Biol. 2021 Apr;61:43-52. doi: 10.1016/j.cbpa.2020.09.010. Epub 2020 Nov 6.
Sugar nucleotide-modifying enzymes of the short-chain dehydrogenase/reductase type use transient oxidation-reduction by a tightly bound nicotinamide cofactor as a common strategy of catalysis to promote a diverse set of reactions, including decarboxylation, single- or double-site epimerization, and dehydration. Although the basic mechanistic principles have been worked out decades ago, the finely tuned control of reactivity and selectivity in several of these enzymes remains enigmatic. Recent evidence on uridine 5'-diphosphate (UDP)-glucuronic acid decarboxylases (UDP-xylose synthase, UDP-apiose/UDP-xylose synthase) and UDP-glucuronic acid-4-epimerase suggests that stereo-electronic constraints established at the enzyme's active site control the selectivity, and the timing of the catalytic reaction steps, in the conversion of the common substrate toward different products. The mechanistic idea of stereo-electronic control is extended to epimerases and dehydratases that deprotonate the Cα of the transient keto-hexose intermediate. The human guanosine 5'-diphosphate (GDP)-mannose 4,6-dehydratase was recently shown to use a minimal catalytic machinery, exactly as predicted earlier from theoretical considerations, for the β-elimination of water from the keto-hexose species.
短链脱氢/还原酶型糖核苷酸修饰酶利用紧密结合的烟酰胺辅因子的瞬时氧化还原作为一种常见的催化策略,促进多种反应,包括脱羧、单或双位点差向异构化和脱水。尽管基本的机械原理几十年前就已经被阐明,但这些酶中的几个在反应性和选择性的精细调控方面仍然是个谜。最近关于尿苷二磷酸(UDP)-葡萄糖醛酸脱羧酶(UDP-木糖合成酶、UDP-阿比糖/UDP-木糖合成酶)和 UDP-葡萄糖醛酸-4-差向异构酶的证据表明,在酶的活性部位建立的立体电子约束控制着选择性和催化反应步骤的时间,在将共同底物转化为不同产物的过程中。立体电子控制的机械思想被扩展到差向异构酶和脱水酶,它们使瞬态酮己糖中间物的 Cα去质子化。最近表明,人类鸟苷二磷酸(GDP)-甘露糖 4,6-脱水酶使用最小的催化机制,完全如前从理论考虑预测的那样,从酮己糖物种中β消除水。