Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Austria.
Austrian Centre of Industrial Biotechnology, Graz, Austria.
FEBS J. 2021 Feb;288(4):1163-1178. doi: 10.1111/febs.15478. Epub 2020 Aug 5.
UDP-glucuronic acid (UDP-GlcA) is a central precursor in sugar nucleotide biosynthesis and common substrate for C4-epimerases and decarboxylases releasing UDP-galacturonic acid (UDP-GalA) and UDP-pentose products, respectively. Despite the different reactions catalyzed, the enzymes are believed to share mechanistic analogy rooted in their joint membership to the short-chain dehydrogenase/reductase (SDR) protein superfamily: Oxidation at the substrate C4 by enzyme-bound NAD initiates the catalytic pathway. Here, we present mechanistic characterization of the C4-epimerization of UDP-GlcA, which in comparison with the corresponding decarboxylation has been largely unexplored. The UDP-GlcA 4-epimerase from Bacillus cereus functions as a homodimer and contains one NAD /subunit (k = 0.25 ± 0.01 s ). The epimerization of UDP-GlcA proceeds via hydride transfer from and to the substrate's C4 while retaining the enzyme-bound cofactor in its oxidized form (≥ 97%) at steady state and without trace of decarboxylation. The k for UDP-GlcA conversion shows a kinetic isotope effect of 2.0 (±0.1) derived from substrate deuteration at C4. The proposed enzymatic mechanism involves a transient UDP-4-keto-hexose-uronic acid intermediate whose formation is rate-limiting overall, and is governed by a conformational step before hydride abstraction from UDP-GlcA. Precise positioning of the substrate in a kinetically slow binding step may be important for the epimerase to establish stereo-electronic constraints in which decarboxylation of the labile β-keto acid species is prevented effectively. Mutagenesis and pH studies implicate the conserved Tyr149 as the catalytic base for substrate oxidation and show its involvement in the substrate positioning step. Collectively, this study suggests that based on overall mechanistic analogy, stereo-electronic control may be a distinguishing feature of catalysis by SDR-type epimerases and decarboxylases active on UDP-GlcA.
UDP-葡萄糖醛酸(UDP-GlcA)是糖核苷酸生物合成的中心前体,也是 C4-差向异构酶和脱羧酶的共同底物,分别释放 UDP-半乳糖醛酸(UDP-GalA)和 UDP-戊糖产物。尽管催化的反应不同,但这些酶被认为具有机械类比性,其根源在于它们共同属于短链脱氢酶/还原酶(SDR)蛋白超家族:酶结合的 NAD 对底物 C4 的氧化启动了催化途径。在这里,我们对 UDP-GlcA 的 C4-差向异构化进行了机制表征,与相应的脱羧化相比,这方面的研究还很不充分。来自蜡状芽孢杆菌的 UDP-GlcA 4-差向异构酶作为同源二聚体发挥作用,每个亚基包含一个 NAD(k=0.25±0.01 s)。UDP-GlcA 的差向异构化通过底物 C4 上的氢化物转移进行,同时在稳态下保持酶结合的辅因子处于氧化形式(≥97%),没有脱羧化的痕迹。UDP-GlcA 转化的 k 值显示出动力学同位素效应为 2.0(±0.1),这是由于 C4 上的底物氘化。提出的酶促机制涉及一个瞬态 UDP-4-酮-己糖醛酸中间产物,其形成是整个反应的限速步骤,并且由从 UDP-GlcA 上进行氢化物提取之前的构象步骤控制。底物在动力学缓慢结合步骤中的精确定位可能对差向异构酶在其中建立立体电子约束以有效阻止不稳定的β-酮酸物种脱羧化非常重要。突变和 pH 研究表明保守的 Tyr149 是底物氧化的催化碱,并表明其参与了底物定位步骤。总的来说,这项研究表明,基于整体的机械类比性,立体电子控制可能是 SDR 型差向异构酶和脱羧酶对 UDP-GlcA 催化的区别特征。