Department of Computer Engineering, Ajou University, Republic of Korea; Department of Artificial Intelligence, Ajou University, Republic of Korea.
School of Engineering, University of California, Merced, United States of America.
Neural Netw. 2021 Jan;133:103-111. doi: 10.1016/j.neunet.2020.10.011. Epub 2020 Oct 22.
In recent years transfer learning has attracted much attention due to its ability to adapt a well-trained model from one domain to another. Fine-tuning is one of the most widely-used methods which exploit a small set of labeled data in the target domain for adapting the network. Including a few methods using the labeled data in the source domain, most transfer learning methods require labeled datasets, and it restricts the use of transfer learning to new domains. In this paper, we propose a fully unsupervised self-tuning algorithm for learning visual features in different domains. The proposed method updates a pre-trained model by minimizing the triplet loss function using only unlabeled data in the target domain. First, we propose the relevance measure for unlabeled data by the bagged clustering method. Then triplets of the anchor, positive, and negative data points are sampled based on the ranking violations of the relevance scores and the Euclidean distances in the embedded feature space. This fully unsupervised self-tuning algorithm improves the performance of the network significantly. We extensively evaluate the proposed algorithm using various metrics, including classification accuracy, feature analysis, and clustering quality, on five benchmark datasets in different domains. Besides, we demonstrate that applying the self-tuning method on the fine-tuned network help achieve better results.
近年来,迁移学习由于能够将训练有素的模型从一个领域适应到另一个领域而受到广泛关注。微调是最广泛使用的方法之一,它利用目标域中的一小部分标记数据来适应网络。除了少数使用源域中标记数据的方法外,大多数迁移学习方法都需要标记数据集,这限制了迁移学习在新领域的使用。在本文中,我们提出了一种完全无监督的自调整算法,用于学习不同领域的视觉特征。所提出的方法通过仅使用目标域中的未标记数据最小化三元组损失函数来更新预训练模型。首先,我们通过袋装聚类方法提出了未标记数据的相关性度量。然后,根据相关性得分的排序违反和嵌入特征空间中的欧几里得距离,基于锚点、正例和负例数据点的排名来对三元组进行采样。这种完全无监督的自调整算法显著提高了网络的性能。我们使用各种指标在五个不同领域的基准数据集上对所提出的算法进行了广泛评估,包括分类准确性、特征分析和聚类质量。此外,我们还证明了在微调网络上应用自调整方法有助于获得更好的结果。