Indian Institute of Information Technology, Sri City, Chittoor, Andhra Pradesh, 517646, India..
Indian Institute of Information Technology, Sri City, Chittoor, Andhra Pradesh, 517646, India.
Neural Netw. 2021 Jan;133:112-122. doi: 10.1016/j.neunet.2020.10.009. Epub 2020 Oct 27.
Transfer learning enables solving a specific task having limited data by using the pre-trained deep networks trained on large-scale datasets. Typically, while transferring the learned knowledge from source task to the target task, the last few layers are fine-tuned (re-trained) over the target dataset. However, these layers are originally designed for the source task that might not be suitable for the target task. In this paper, we introduce a mechanism for automatically tuning the Convolutional Neural Networks (CNN) for improved transfer learning. The pre-trained CNN layers are tuned with the knowledge from target data using Bayesian Optimization. First, we train the final layer of the base CNN model by replacing the number of neurons in the softmax layer with the number of classes involved in the target task. Next, the CNN is tuned automatically by observing the classification performance on the validation data (greedy criteria). To evaluate the performance of the proposed method, experiments are conducted on three benchmark datasets, e.g., CalTech-101, CalTech-256, and Stanford Dogs. The classification results obtained through the proposed AutoTune method outperforms the standard baseline transfer learning methods over the three datasets by achieving 95.92%, 86.54%, and 84.67% accuracy over CalTech-101, CalTech-256, and Stanford Dogs, respectively. The experimental results obtained in this study depict that tuning of the pre-trained CNN layers with the knowledge from the target dataset confesses better transfer learning ability. The source codes are available at https://github.com/JekyllAndHyde8999/AutoTune_CNN_TransferLearning.
迁移学习使我们能够通过使用在大规模数据集上训练的预训练深度网络来解决数据有限的特定任务。通常,在将从源任务学到的知识转移到目标任务时,最后几层会在目标数据集上进行微调(重新训练)。然而,这些层最初是为源任务设计的,可能不适合目标任务。在本文中,我们介绍了一种自动调整卷积神经网络(CNN)以进行改进的迁移学习的机制。使用贝叶斯优化从目标数据中调整预训练的 CNN 层。首先,我们通过将软max 层中的神经元数量替换为目标任务中涉及的类别数量来训练基础 CNN 模型的最后一层。接下来,通过观察验证数据上的分类性能(贪婪准则)自动调整 CNN。为了评估所提出方法的性能,我们在三个基准数据集(例如 CalTech-101、CalTech-256 和 Stanford Dogs)上进行了实验。通过所提出的 AutoTune 方法获得的分类结果在三个数据集上均优于标准基线迁移学习方法,在 CalTech-101、CalTech-256 和 Stanford Dogs 上的准确率分别达到 95.92%、86.54%和 84.67%。本研究中的实验结果表明,使用目标数据集的知识调整预训练的 CNN 层可以提高迁移学习能力。源代码可在 https://github.com/JekyllAndHyde8999/AutoTune_CNN_TransferLearning 上获得。