Suppr超能文献

一种无监督神经形态聚类算法。

An unsupervised neuromorphic clustering algorithm.

作者信息

Diamond Alan, Schmuker Michael, Nowotny Thomas

机构信息

School of Engineering and Informatics, University of Sussex, Falmer, Brighton, BN1 9QJ, UK.

Department of Computer Science, University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK.

出版信息

Biol Cybern. 2019 Aug;113(4):423-437. doi: 10.1007/s00422-019-00797-7. Epub 2019 Apr 3.

Abstract

Brains perform complex tasks using a fraction of the power that would be required to do the same on a conventional computer. New neuromorphic hardware systems are now becoming widely available that are intended to emulate the more power efficient, highly parallel operation of brains. However, to use these systems in applications, we need "neuromorphic algorithms" that can run on them. Here we develop a spiking neural network model for neuromorphic hardware that uses spike timing-dependent plasticity and lateral inhibition to perform unsupervised clustering. With this model, time-invariant, rate-coded datasets can be mapped into a feature space with a specified resolution, i.e., number of clusters, using exclusively neuromorphic hardware. We developed and tested implementations on the SpiNNaker neuromorphic system and on GPUs using the GeNN framework. We show that our neuromorphic clustering algorithm achieves results comparable to those of conventional clustering algorithms such as self-organizing maps, neural gas or k-means clustering. We then combine it with a previously reported supervised neuromorphic classifier network to demonstrate its practical use as a neuromorphic preprocessing module.

摘要

大脑仅需消耗传统计算机完成相同任务所需能量的一小部分就能执行复杂任务。如今,新型神经形态硬件系统正变得广泛可用,其旨在模拟大脑更节能、高度并行的运行方式。然而,要在应用中使用这些系统,我们需要能够在其上运行的“神经形态算法”。在此,我们为神经形态硬件开发了一种脉冲神经网络模型,该模型利用脉冲时间依赖可塑性和侧向抑制来执行无监督聚类。通过此模型,时不变、速率编码的数据集可以仅使用神经形态硬件映射到具有指定分辨率(即聚类数量)的特征空间中。我们在SpiNNaker神经形态系统和使用GeNN框架的GPU上开发并测试了实现方法。我们表明,我们的神经形态聚类算法取得的结果与传统聚类算法(如自组织映射、神经气体或k均值聚类)相当。然后,我们将其与先前报道的有监督神经形态分类器网络相结合,以证明其作为神经形态预处理模块的实际用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac39/6658584/d8e8381cc4c2/422_2019_797_Fig3_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验