Quotane Ilyasse, El Boudouti El Houssaine, Djafari-Rouhani Bahram
Laboratoire de Physique de la Matière et de Rayonnement (LPMR), Département de Physique, Faculté des Sciences, Université Mohammed I, 60000 Oujda, Morocco.
Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Département de Physique, Université de Lille, 59655 Villeneuve d'Ascq, France.
Nanomaterials (Basel). 2020 Nov 5;10(11):2205. doi: 10.3390/nano10112205.
In this paper, we provide a theoretical and numerical study of the acoustic properties of infinite and semi-infinite superlattices made out of graphene-semiconductor bilayers. In addition to the band structure, we emphasize the existence and behavior of localized and resonant acoustic modes associated with the free surface of such structures. These modes are polarized in the sagittal plane, defined by the incident wavevector and the normal to the layers. The surface modes are obtained from the peaks of the density of states, either inside the bulk bands or inside the minigaps of the superlattice. In these structures, the two directions of vibrations (longitudinal and transverse) are coupled giving rise to two bulk bands associated with the two polarizations of the waves. The creation of the free surface of the superlattice induces true surface localized modes inside the terahertz acoustic forbidden gaps, but also pseudo-surface modes which appear as well-defined resonances inside the allowed bands of the superlattice. Despite the low thickness of the graphene layer, and though graphene is a gapless material, when it is inserted periodically in a semiconductor, it allows the opening of wide gaps for all values of the wave vector k// (parallel to the interfaces). Numerical illustrations of the band structures and surface modes are given for graphene-Si superlattices, and the surface layer can be either Si or graphene. These surface acoustic modes can be used to realize liquid or bio-sensors graphene-based phononic crystal operating in the THz frequency domain.
在本文中,我们对由石墨烯 - 半导体双层构成的无限和半无限超晶格的声学特性进行了理论和数值研究。除了能带结构外,我们还着重研究了与此类结构自由表面相关的局域和共振声学模式的存在及行为。这些模式在矢状面内极化,矢状面由入射波矢和层的法线定义。表面模式是从体态带内或超晶格微带隙内的态密度峰值获得的。在这些结构中,振动的两个方向(纵向和横向)相互耦合,产生与波的两种极化相关的两个体态带。超晶格自由表面的形成在太赫兹声子禁带内产生了真正的表面局域模式,同时也产生了伪表面模式,这些伪表面模式表现为超晶格允许带内明确的共振。尽管石墨烯层厚度很薄,并且石墨烯是一种无带隙材料,但当它周期性地插入半导体中时,对于波矢(k_{\parallel})(平行于界面)的所有值,它都能打开宽禁带。文中给出了石墨烯 - 硅超晶格的能带结构和表面模式的数值示例,表面层可以是硅或石墨烯。这些表面声学模式可用于实现工作在太赫兹频域的基于石墨烯的声子晶体液体或生物传感器。