El Bouanani Lidia, Serna Martha I, M N Hasan Syed, Murillo Bayron L, Nam Seungjin, Choi Hyunjoo, Alshareef Husam N, Quevedo-Lopez Manuel A
Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas 75080, United States.
Department of Electrical Engineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas 75080, United States.
ACS Appl Mater Interfaces. 2020 Nov 18;12(46):51645-51653. doi: 10.1021/acsami.0c15462. Epub 2020 Nov 9.
Two-dimensional (2D) semiconductors, such as transition-metal dichalcogenides (TMDs), have attracted immense interest due to their excellent electronic and optical properties. The combination of single and multilayered 2D TMDs coupled with either Si or II-VI semiconductors can result in robust and reliable photodetectors. In this paper, we report the deposition process of MoSe-layered films using pulsed laser deposition (PLD) over areas of 20 cm with a tunable band gap. Raman and X-ray diffraction indicates crystalline and highly oriented layered MoSe. X-ray photoelectron spectroscopy shows Mo and Se present in the first few layers of the film. Rutherford backscattering demonstrates the effect of O and C on the surface and film/substrate interface of the deposited films. Ultraviolet-visible spectroscopy, Kelvin probe, photoelectron spectroscopy, and electrical measurements are used to investigate the band diagram and electrical property dependence as a function of MoSe layers/thickness. As the MoSe thickness increases from 3.5 to 11.4 nm, the band gap decreases from 1.98 to 1.75 eV, the work function increases from 4.52 to 4.72 eV, the ionization energy increases from 5.71 to 5.77 eV, the sheet resistance decreases from 541 to 56.0 kΩ, the contact resistance decreases from 187 to 54.6 Ω·cm, and the transfer length increases from 2.27 to 61.9 nm. Transmission electron microscopy (TEM) cross-sectional images demonstrate the layered structure of the MoSe with an average interlayer spacing of 0.68 nm. The fabricated MoSe-Si photodiodes demonstrate a current on/off ratio of ∼2 × 10 orders of magnification and photocurrent generation with a 22.5 ns rise time and a 190.8 ns decay time, respectively.
二维(2D)半导体,如过渡金属二硫属化物(TMDs),因其优异的电子和光学特性而引起了极大的关注。单层和多层2D TMDs与Si或II-VI半导体相结合,可制成坚固可靠的光电探测器。在本文中,我们报道了使用脉冲激光沉积(PLD)在20平方厘米的区域上沉积具有可调带隙的MoSe层状薄膜的过程。拉曼光谱和X射线衍射表明,沉积的MoSe具有结晶性且高度取向。X射线光电子能谱显示,Mo和Se存在于薄膜的前几层中。卢瑟福背散射表明了O和C对沉积薄膜表面及薄膜/衬底界面的影响。利用紫外-可见光谱、开尔文探针、光电子能谱和电学测量来研究能带图以及电学性质随MoSe层数/厚度的变化。随着MoSe厚度从3.5纳米增加到11.4纳米,带隙从1.98电子伏特减小到1.75电子伏特,功函数从4.52电子伏特增加到4.72电子伏特,电离能从5.71电子伏特增加到5.77电子伏特,薄层电阻从541千欧减小到56.0千欧,接触电阻从187欧姆·厘米减小到54.6欧姆·厘米,转移长度从2.27纳米增加到61.9纳米。透射电子显微镜(TEM)的横截面图像展示了MoSe的层状结构,平均层间距为0.68纳米。所制备的MoSe-Si光电二极管的电流开/关比约为2×10的数量级,光电流产生的上升时间为22.5纳秒,衰减时间为190.8纳秒。