Suppr超能文献

土壤中潜在有毒元素的来源解析和空间分布:受体和地质统计模型的新探索。

Source apportionment and spatial distribution of potentially toxic elements in soils: A new exploration on receptor and geostatistical models.

机构信息

College of Geography and Environment, Shandong Normal University, Jinan 250014, China.

Natural Resources and Planning Bureau of Linyi, Linyi 276000, China.

出版信息

Sci Total Environ. 2021 Mar 10;759:143428. doi: 10.1016/j.scitotenv.2020.143428. Epub 2020 Nov 1.

Abstract

Potentially toxic element (PTE) pollution is considered as the main soil environmental problem in the world. Source apportionment and spatial pattern of soil PTEs are essential for soil management. US-EPA positive matrix factorization (EPAPMF) and sequential Gaussian simulation (SGS) are general modeling tools for source apportionment and spatial distribution, respectively. Factor analysis with nonnegative constraints (FA-NNC) and stochastic partial derivative equations (SPDE) provided potential tools for this issue. We compared the performance of FA-NNC with PMF and the performance of SPDE with SGS, based on a dataset containing 9 PTEs in 285 topsoil samples. Three factors were determined by the two receptor models, and the source contributions were similar, suggesting that FA-NNC can validly identify quantitative sources of soil PTEs. The average source contributions were calculated based on the PMF and FA-NNC. Natural sources dominated the contents of As, Co, Cr, Cu, Ni, and Zn and affected 56.0%, 38.7%, and 84.8% of the Cd, Hg, and Pb concentrations, respectively. A total of 59.8% of Hg and 12.0% of Pb were associated with atmospheric deposition from coal combustion, industrial and traffic emissions, respectively. Agricultural and industrial activities contributed 37.2% of Cd concentration. SPDE proved to be an effective geostatistical technique to simulate the spatial patterns of soil PTEs with higher prediction accuracy than SGS. Co, Cr, Cu, and Ni had similar spatial patterns with hotspots randomly distributed across the study area. The common hotspots of As, Cd, Hg, Pb, and Zn in central parts inherited their high geochemical background in mudstone, while intensive human inputs in these areas also contributed to the accumulation of Cd, Hg, and Pb.

摘要

潜在有毒元素 (PTE) 污染被认为是世界范围内主要的土壤环境问题。土壤 PTE 的来源解析和空间格局对于土壤管理至关重要。美国环保署正矩阵因子分解 (PMF) 和序贯高斯模拟 (SGS) 分别是源解析和空间分布的通用建模工具。非负约束因子分析 (FA-NNC) 和随机偏微分方程 (SPDE) 为解决这个问题提供了潜在的工具。我们比较了 FA-NNC 与 PMF 的性能以及 SPDE 与 SGS 的性能,使用包含 285 个表层土壤样本中 9 种 PTE 的数据集。两种受体模型都确定了三个因素,源贡献相似,表明 FA-NNC 可以有效地识别土壤 PTE 的定量来源。基于 PMF 和 FA-NNC 计算了平均源贡献。自然源主导了 As、Co、Cr、Cu、Ni 和 Zn 的含量,分别影响 Cd、Hg 和 Pb 浓度的 56.0%、38.7%和 84.8%。Hg 的 59.8%和 Pb 的 12.0%与煤燃烧、工业和交通排放的大气沉降有关。农业和工业活动分别贡献了 37.2%的 Cd 浓度。SPDE 被证明是一种有效的地质统计学技术,能够模拟土壤 PTE 的空间格局,具有比 SGS 更高的预测精度。Co、Cr、Cu 和 Ni 具有相似的空间格局,热点随机分布在整个研究区域。As、Cd、Hg、Pb 和 Zn 的共同热点集中在泥岩的高地球化学背景中,而这些地区密集的人为输入也导致了 Cd、Hg 和 Pb 的积累。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验