Suppr超能文献

相似文献

1
Michler's hydrol blue elucidates structural differences in prion strains.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29677-29683. doi: 10.1073/pnas.2001732117. Epub 2020 Nov 9.
2
Michler's hydrol blue: a sensitive probe for amyloid fibril detection.
Biochemistry. 2011 May 3;50(17):3451-61. doi: 10.1021/bi102016p. Epub 2011 Apr 11.
3
Amyloid fibrils embodying distinctive yeast prion phenotypes exhibit diverse morphologies.
FEMS Yeast Res. 2018 Sep 1;18(6). doi: 10.1093/femsyr/foy059.
4
Distinct prion strains are defined by amyloid core structure and chaperone binding site dynamics.
Chem Biol. 2014 Feb 20;21(2):295-305. doi: 10.1016/j.chembiol.2013.12.013. Epub 2014 Jan 30.
5
Kinetics and polymorphs of yeast prion Sup35NM amyloidogenesis.
Int J Biol Macromol. 2017 Sep;102:1241-1249. doi: 10.1016/j.ijbiomac.2017.05.001. Epub 2017 May 2.
6
The Hofmeister effect on amyloid formation using yeast prion protein.
Protein Sci. 2010 Jan;19(1):47-56. doi: 10.1002/pro.281.
8
Origins and kinetic consequences of diversity in Sup35 yeast prion fibers.
Nat Struct Biol. 2002 May;9(5):389-96. doi: 10.1038/nsb786.
9
The Yarrowia lipolytica orthologs of Sup35p assemble into thioflavin T-negative amyloid fibrils.
Biochem Biophys Res Commun. 2020 Aug 27;529(3):533-539. doi: 10.1016/j.bbrc.2020.06.024. Epub 2020 Jul 14.
10
Effects of randomizing the Sup35NM prion domain sequence on formation of amyloid fibrils in vitro.
Biochem Biophys Res Commun. 2007 Feb 2;353(1):139-46. doi: 10.1016/j.bbrc.2006.11.143. Epub 2006 Dec 6.

引用本文的文献

1
Stimuli-Responsive Membrane Anchor Peptide Nanofoils for Tunable Membrane Association and Lipid Bilayer Fusion.
ACS Appl Mater Interfaces. 2022 Dec 21;14(50):55320-55331. doi: 10.1021/acsami.2c11946. Epub 2022 Dec 6.

本文引用的文献

1
Structural Analogue of Thioflavin T, DMASEBT, as a Tool for Amyloid Fibrils Study.
Anal Chem. 2019 Feb 19;91(4):3131-3140. doi: 10.1021/acs.analchem.8b05737. Epub 2019 Feb 7.
2
DNP-Assisted NMR Investigation of Proteins at Endogenous Levels in Cellular Milieu.
Methods Enzymol. 2019;615:373-406. doi: 10.1016/bs.mie.2018.08.023. Epub 2018 Sep 18.
3
Rational Structure-Based Design of Fluorescent Probes for Amyloid Folds.
Chembiochem. 2019 May 2;20(9):1161-1166. doi: 10.1002/cbic.201800664. Epub 2019 Mar 7.
4
Amyloid fibrils embodying distinctive yeast prion phenotypes exhibit diverse morphologies.
FEMS Yeast Res. 2018 Sep 1;18(6). doi: 10.1093/femsyr/foy059.
5
Physical basis of amyloid fibril polymorphism.
Nat Commun. 2018 Feb 16;9(1):699. doi: 10.1038/s41467-018-03164-5.
6
Amyloid fibril polymorphism: a challenge for molecular imaging and therapy.
J Intern Med. 2018 Mar;283(3):218-237. doi: 10.1111/joim.12732. Epub 2018 Feb 19.
7
Binding of Polythiophenes to Amyloids: Structural Mapping of the Pharmacophore.
ACS Chem Neurosci. 2018 Mar 21;9(3):475-481. doi: 10.1021/acschemneuro.7b00397. Epub 2017 Dec 4.
8
Combining DNP NMR with segmental and specific labeling to study a yeast prion protein strain that is not parallel in-register.
Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):3642-3647. doi: 10.1073/pnas.1619051114. Epub 2017 Mar 22.
10
The activities of amyloids from a structural perspective.
Nature. 2016 Nov 10;539(7628):227-235. doi: 10.1038/nature20416.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验