Suppr超能文献

不同的朊病毒毒株由淀粉样核心结构和伴侣蛋白结合位点动力学所定义。

Distinct prion strains are defined by amyloid core structure and chaperone binding site dynamics.

作者信息

Frederick Kendra K, Debelouchina Galia T, Kayatekin Can, Dorminy Tea, Jacavone Angela C, Griffin Robert G, Lindquist Susan

机构信息

Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Francis Bitter Magnet Labaratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Chem Biol. 2014 Feb 20;21(2):295-305. doi: 10.1016/j.chembiol.2013.12.013. Epub 2014 Jan 30.

Abstract

Yeast prions are self-templating protein-based mechanisms of inheritance whose conformational changes lead to the acquisition of diverse new phenotypes. The best studied of these is the prion domain (NM) of Sup35, which forms an amyloid that can adopt several distinct conformations (strains) that produce distinct phenotypes. Using magic-angle spinning nuclear magnetic resonance spectroscopy, we provide a detailed look at the dynamic properties of these forms over a broad range of timescales. We establish that different prion strains have distinct amyloid structures, with many side chains in different chemical environments. Surprisingly, the prion strain with a larger fraction of rigid residues also has a larger fraction of highly mobile residues. Differences in mobility correlate with differences in interaction with the prion-partitioning factor Hsp104 in vivo, perhaps explaining strain-specific differences in inheritance.

摘要

酵母朊病毒是基于蛋白质的自我模板化遗传机制,其构象变化会导致获得多种新表型。其中研究得最透彻的是 Sup35 的朊病毒结构域(NM),它形成一种淀粉样蛋白,可呈现几种不同的构象(毒株),产生不同的表型。利用魔角旋转核磁共振光谱技术,我们在广泛的时间尺度上详细观察了这些形式的动态特性。我们确定不同的朊病毒毒株具有不同的淀粉样蛋白结构,许多侧链处于不同的化学环境中。令人惊讶的是,刚性残基比例较大的朊病毒毒株也有较大比例的高度可移动残基。迁移率的差异与体内与朊病毒分配因子 Hsp104 的相互作用差异相关,这或许可以解释遗传过程中的毒株特异性差异。

相似文献

1
Distinct prion strains are defined by amyloid core structure and chaperone binding site dynamics.
Chem Biol. 2014 Feb 20;21(2):295-305. doi: 10.1016/j.chembiol.2013.12.013. Epub 2014 Jan 30.
2
Amyloid fibrils embodying distinctive yeast prion phenotypes exhibit diverse morphologies.
FEMS Yeast Res. 2018 Sep 1;18(6). doi: 10.1093/femsyr/foy059.
3
Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo.
PLoS Genet. 2016 Nov 4;12(11):e1006417. doi: 10.1371/journal.pgen.1006417. eCollection 2016 Nov.
4
Prion amyloid structure explains templating: how proteins can be genes.
FEMS Yeast Res. 2010 Dec;10(8):980-91. doi: 10.1111/j.1567-1364.2010.00666.x.
5
Impact of Amyloid Polymorphism on Prion-Chaperone Interactions in Yeast.
Viruses. 2019 Apr 16;11(4):349. doi: 10.3390/v11040349.
6
Substoichiometric Hsp104 regulates the genesis and persistence of self-replicable amyloid seeds of Sup35 prion domain.
J Biol Chem. 2022 Aug;298(8):102143. doi: 10.1016/j.jbc.2022.102143. Epub 2022 Jun 14.
7
Radically different amyloid conformations dictate the seeding specificity of a chimeric Sup35 prion.
J Mol Biol. 2011 Apr 22;408(1):1-8. doi: 10.1016/j.jmb.2011.02.025. Epub 2011 Feb 17.
8
Molecular basis for diversification of yeast prion strain conformation.
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2389-2394. doi: 10.1073/pnas.1715483115. Epub 2018 Feb 21.
9
Orientation of aromatic residues in amyloid cores: structural insights into prion fiber diversity.
Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17158-63. doi: 10.1073/pnas.1415663111. Epub 2014 Nov 17.
10
Nucleation seed size determines amyloid clearance and establishes a barrier to prion appearance in yeast.
Nat Struct Mol Biol. 2020 Jun;27(6):540-549. doi: 10.1038/s41594-020-0416-6. Epub 2020 May 4.

引用本文的文献

1
Identification of protein aggregates in the aging vertebrate brain with prion-like and phase-separation properties.
Cell Rep. 2024 Jun 25;43(6):112787. doi: 10.1016/j.celrep.2023.112787. Epub 2024 May 28.
2
DNP-assisted solid-state NMR enables detection of proteins at nanomolar concentrations in fully protonated cellular milieu.
J Biomol NMR. 2024 Jun;78(2):95-108. doi: 10.1007/s10858-024-00436-9. Epub 2024 Mar 23.
3
Overexpression of Hsp104 by Causing Dissolution of the Prion Seeds Cures the Yeast [] Prion.
Int J Mol Sci. 2023 Jun 29;24(13):10833. doi: 10.3390/ijms241310833.
4
FuzPred: a web server for the sequence-based prediction of the context-dependent binding modes of proteins.
Nucleic Acids Res. 2023 Jul 5;51(W1):W198-W206. doi: 10.1093/nar/gkad214.
5
Structural Bases of Prion Variation in Yeast.
Int J Mol Sci. 2022 May 20;23(10):5738. doi: 10.3390/ijms23105738.
6
Influence of the Dynamically Disordered N-Terminal Tail Domain on the Amyloid Core Structure of Human Y145Stop Prion Protein Fibrils.
Front Mol Biosci. 2022 Feb 14;9:841790. doi: 10.3389/fmolb.2022.841790. eCollection 2022.
7
Amyloid conformation-dependent disaggregation in a reconstituted yeast prion system.
Nat Chem Biol. 2022 Mar;18(3):321-331. doi: 10.1038/s41589-021-00951-y. Epub 2022 Feb 17.
8
Amyloid Fragmentation and Disaggregation in Yeast and Animals.
Biomolecules. 2021 Dec 15;11(12):1884. doi: 10.3390/biom11121884.
9
Amyloid particles facilitate surface-catalyzed cross-seeding by acting as promiscuous nanoparticles.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2104148118.
10
Dangerous Stops: Nonsense Mutations Can Dramatically Increase Frequency of Prion Conversion.
Int J Mol Sci. 2021 Feb 3;22(4):1542. doi: 10.3390/ijms22041542.

本文引用的文献

1
Structural definition is important for the propagation of the yeast [PSI+] prion.
Mol Cell. 2013 Jun 6;50(5):675-85. doi: 10.1016/j.molcel.2013.05.010.
3
Operational plasticity enables hsp104 to disaggregate diverse amyloid and nonamyloid clients.
Cell. 2012 Nov 9;151(4):778-793. doi: 10.1016/j.cell.2012.09.038.
4
easyFRAP: an interactive, easy-to-use tool for qualitative and quantitative analysis of FRAP data.
Bioinformatics. 2012 Jul 1;28(13):1800-1. doi: 10.1093/bioinformatics/bts241. Epub 2012 Apr 27.
5
Prions are a common mechanism for phenotypic inheritance in wild yeasts.
Nature. 2012 Feb 15;482(7385):363-8. doi: 10.1038/nature10875.
6
Insight into molecular basis of curing of [PSI+] prion by overexpression of 104-kDa heat shock protein (Hsp104).
J Biol Chem. 2012 Jan 2;287(1):542-556. doi: 10.1074/jbc.M111.302869. Epub 2011 Nov 11.
7
Segmental polymorphism in a functional amyloid.
Biophys J. 2011 Nov 2;101(9):2242-50. doi: 10.1016/j.bpj.2011.09.051. Epub 2011 Nov 1.
8
10
The molecular organization of the fungal prion HET-s in its amyloid form.
J Mol Biol. 2009 Nov 20;394(1):119-27. doi: 10.1016/j.jmb.2009.09.015. Epub 2009 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验