Department of Microbiology and Molecular Genetics, Briggs Hall, One Shields Avenue, University of California, Davis, CA, USA.
MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH42XU, Scotland, UK.
Environ Microbiol. 2021 Jul;23(7):3665-3681. doi: 10.1111/1462-2920.15304. Epub 2020 Nov 26.
Low temperatures constrain cellular life due to reductions in nutrient uptake, enzyme kinetics, membrane permeability, and function of other biomacromolecules. This has implications for the biophysical limits of life on Earth, and the plausibility of life in extraterrestrial locations. Although most pseudomonads are mesophilic in nature, isolates such as the Antarctic Pseudomonas syringae Lz4W exhibit considerable psychrotolerance, with an ability to grow even between 4 and 0°C. In this review, we explore the molecular traits and characteristic phenotypes of P. syringae Lz4W that enable life at low temperatures. We describe adaptations that enhance membrane fluidity; examine genes involved in cellular function and survival in the cold; assess capability for energy generation at low temperature; and detail the mechanics of DNA repair and RNA processing at low temperature, and speculate that P. syringae Lz4W can also synthesize glycerol to maintain flexibility of macromolecular systems. In the range 4 to 0ºC, there are considerable changes in the properties and behaviour of water. Specifically, density can have adverse impacts on plasma-membrane functions, cytoplasmic viscosity, protein behaviour, and other essential properties of cellular system. We identified a combination of adaptations that may be peculiar to cold-tolerant P. syringae, including increase of unsaturated fatty acids in the plasma membrane; a RNA polymerase able to function at 0°C; RecBCD- and RuvAB-dependent reestablishment of replication fork; and efficiencies of degradosome machinery and RNA processing by RNaseR at low temperature. Several unresolved questions are discussed in the context of astrobiology, and further work needed on the psychrotolerance of P. syringae.
低温会通过减少营养物质摄取、酶动力学、膜通透性和其他生物大分子的功能来限制细胞生命。这对地球上生命的生物物理限制以及外星生命的存在可能性都有影响。尽管大多数假单胞菌本质上是嗜温的,但像南极假单胞菌 Lz4W 这样的分离株表现出相当大的耐寒性,甚至能够在 4 到 0°C 之间生长。在这篇综述中,我们探讨了使 Lz4W 假单胞菌能够在低温下生存的分子特征和典型表型。我们描述了增强膜流动性的适应机制;研究了与细胞在低温下的功能和生存相关的基因;评估了在低温下产生能量的能力;详细说明了低温下 DNA 修复和 RNA 处理的机制,并推测 Lz4W 假单胞菌也可以合成甘油来维持大分子系统的灵活性。在 4 到 0°C 的范围内,水的性质和行为会发生相当大的变化。具体来说,密度可能会对质膜功能、细胞质粘度、蛋白质行为和细胞系统的其他重要性质产生不利影响。我们确定了一组可能是耐寒假单胞菌特有的适应机制,包括增加质膜中的不饱和脂肪酸;一种能够在 0°C 下发挥作用的 RNA 聚合酶;RecBCD 和 RuvAB 依赖性复制叉的重新建立;以及低温下降解体机制和 RNA 处理效率由 RNaseR 决定。在天体生物学的背景下,我们讨论了几个未解决的问题,并需要进一步研究假单胞菌的耐寒性。