Hussain Ashaq, Ray Malay Kumar
Centre for Cellular and Molecular Biology, Hyderabad, India.
J Genet Eng Biotechnol. 2023 Oct 16;21(1):101. doi: 10.1186/s43141-023-00553-2.
In Antarctic P. syringae RNase R play an essential role in the processing of 16S and 5S rRNA, thereby playing an important role in cold-adapted growth of the bacterium. This study is focused on deciphering the in vivo functional activity of mesophilic exoribonuclease R and its catalytic domain (RNB) in an evolutionary distant psychrophilic bacterium Pseudomonas syringae Lz4W.
Our results confirm that E. coli RNase R complemented the physiological functions of the psychrophilic bacterium P. syringae RNase R and rescued the cold-sensitive phenotype of Pseudomonas syringae ∆rnr mutant. More importantly, the catalytic domain (RNB) of the E. coli RNase R is also capable of alleviating the cold-sensitive growth defects of ∆rnr mutant as seen with the catalytic domain (RNB) of the P. syringae enzyme. The Catalytic domain of E. coli RNase R was less efficient than the Catalytic domain of P. syringae RNase R in rescuing the cold-sensitive growth of ∆rnr mutant at 4°C, as the ∆rnr expressing the RNB (catalytic domain of E. coli RNase R) displayed longer lag phase than the RNB (Catalytic domain of P. syringae RNase R) complemented ∆rnr mutant at 4°C. Altogether it appears that the E. coli RNase R and P. syringae RNase R are functionally exchangeable for the growth requirements of P. syringae at low temperature (4°C). Our results also confirm that in P. syringae the requirement of RNase R for supporting the growth at 4°C is independent of the degradosomal complex.
E. coli RNase R (RNase R) rescues the cold-sensitive phenotype of the P. syringae Δrnr mutant. Similarly, the catalytic domain of E. coli RNase R (RNB) is also capable of supporting the growth of Δrnr mutant at low temperatures. These findings have a vast scope in the design and development of low-temperature-based expression systems.
在南极丁香假单胞菌中,核糖核酸酶R(RNase R)在16S和5S核糖体RNA(rRNA)的加工过程中发挥着重要作用,从而在该细菌的低温适应性生长中扮演重要角色。本研究聚焦于破译嗜温性外切核糖核酸酶R及其催化结构域(RNB)在进化距离较远的嗜冷性细菌丁香假单胞菌Lz4W中的体内功能活性。
我们的结果证实,大肠杆菌核糖核酸酶R(E. coli RNase R)补充了嗜冷性细菌丁香假单胞菌核糖核酸酶R的生理功能,并挽救了丁香假单胞菌∆rnr突变体的冷敏感表型。更重要的是,大肠杆菌核糖核酸酶R的催化结构域(RNB)也能够缓解∆rnr突变体的冷敏感生长缺陷,这与丁香假单胞菌酶的催化结构域(RNB)的情况类似。在4°C下挽救∆rnr突变体的冷敏感生长时,大肠杆菌核糖核酸酶R的催化结构域比丁香假单胞菌核糖核酸酶R的催化结构域效率更低,因为表达RNB(大肠杆菌核糖核酸酶R的催化结构域)的∆rnr在4°C下比表达RNB(丁香假单胞菌核糖核酸酶R的催化结构域)的互补∆rnr突变体表现出更长的延迟期。总体而言,大肠杆菌核糖核酸酶R和丁香假单胞菌核糖核酸酶R在丁香假单胞菌低温(4°C)生长需求方面似乎具有功能可互换性。我们的结果还证实,在丁香假单胞菌中,核糖核酸酶R对4°C生长的支持需求独立于降解体复合物。
大肠杆菌核糖核酸酶R(RNase R)挽救了丁香假单胞菌∆rnr突变体的冷敏感表型。同样,大肠杆菌核糖核酸酶R的催化结构域(RNB)也能够支持∆rnr突变体在低温下生长。这些发现对于基于低温的表达系统的设计和开发具有广阔的应用前景。