Rybkin Vladimir V
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
J Phys Chem B. 2020 Nov 19;124(46):10435-10441. doi: 10.1021/acs.jpcb.0c07859. Epub 2020 Nov 10.
Aqueous solvated electron (e), a key species in radiation and plasma chemistry, can efficiently reduce CO in a potential green chemistry application. Here, the mechanism of this reaction is unravelled by condensed-phase molecular dynamics based on the correlated wave function and an accurate density functional theory (DFT) approximation. Here, we design and apply the holistic protocol for solvated electron's reactions encompassing all relevant reaction stages starting from diffusion. The carbon dioxide reduction proceeds via a cavity intermediate, which is separated from the product (CO) by an energy barrier due to the bending of CO and the corresponding solvent reorganization energy. The formation of the intermediate is caused by solvated electron's diffusion, whereas the intermediate transformation to CO is triggered by hydrogen bond breaking in the second solvation shell of the solvated electron. This picture of an activation-controlled e reaction is very different from both rapid barrierless electron transfer and proton-coupled electron transfer, where key transformations are caused by proton migration.
水合电子(e)是辐射化学和等离子体化学中的关键物种,在潜在的绿色化学应用中能有效还原一氧化碳。在此,基于相关波函数和精确密度泛函理论(DFT)近似的凝聚相分子动力学揭示了该反应的机理。我们设计并应用了涵盖从扩散开始的所有相关反应阶段的水合电子反应整体方案。二氧化碳还原通过一个空穴中间体进行,由于一氧化碳的弯曲和相应的溶剂重组能,该中间体与产物(一氧化碳)之间存在能垒。中间体的形成是由水合电子的扩散引起的,而中间体向一氧化碳的转化是由水合电子第二溶剂化层中的氢键断裂触发的。这种活化控制的电子反应图景与快速无势垒电子转移和质子耦合电子转移都非常不同,在后者中关键转化是由质子迁移引起的。