Lan Jinggang, Rybkin Vladimir V, Pasquarello Alfredo
Chaire de Simulation àl'Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
HQS Quantum Simulations GmbH, Haid-und-Neu-Straße 7, 76131, Karlsruhe, Germany.
Angew Chem Int Ed Engl. 2022 Sep 19;61(38):e202209398. doi: 10.1002/anie.202209398. Epub 2022 Aug 8.
The temperature-dependent properties of the aqueous electron have been extensively studied using mixed quantum-classical simulations in a wide range of thermodynamic conditions based on one-electron pseudopotentials. While the cavity model appears to explain most of the physical properties of the aqueous electron, only a non-cavity model has so far been successful in accounting for the temperature dependence of the absorption spectrum. Here, we present an accurate and efficient description of the aqueous electron under various thermodynamic conditions by combining hybrid functional-based molecular dynamics, machine learning techniques, and multiple time-step methods. Our advanced simulations accurately describe the temperature dependence of the absorption maximum in the presence of cavity formation. Specifically, our work reveals that the red shift of the absorption maximum results from an increasing gyration radius with temperature, rather than from global density variations as previously suggested.
基于单电子赝势,通过混合量子经典模拟在广泛的热力学条件下对水合电子的温度依赖性性质进行了广泛研究。虽然腔模型似乎可以解释水合电子的大部分物理性质,但迄今为止,只有非腔模型成功地解释了吸收光谱的温度依赖性。在这里,我们通过结合基于杂化泛函的分子动力学、机器学习技术和多时间步方法,给出了在各种热力学条件下水合电子的准确而有效的描述。我们的先进模拟准确地描述了在存在空穴形成时吸收最大值的温度依赖性。具体而言,我们的工作表明,吸收最大值的红移是由于回转半径随温度增加,而不是如先前所认为的由整体密度变化引起的。