Suppr超能文献

老年患者新冠病毒病严重程度的预测模型

A predictive model for the severity of COVID-19 in elderly patients.

作者信息

Zeng Furong, Deng Guangtong, Cui Yanhui, Zhang Yan, Dai Minhui, Chen Lingli, Han Duoduo, Li Wen, Guo Kehua, Chen Xiang, Shen Minxue, Pan Pinhua

机构信息

Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.

National Clinical Research Center for Geriatric Disorders, Changsha, China.

出版信息

Aging (Albany NY). 2020 Nov 10;12(21):20982-20996. doi: 10.18632/aging.103980.

Abstract

Elderly patients with coronavirus disease 2019 (COVID-19) are more likely to develop severe or critical pneumonia, with a high fatality rate. To date, there is no model to predict the severity of COVID-19 in elderly patients. In this study, patients who maintained a non-severe condition and patients who progressed to severe or critical COVID-19 during hospitalization were assigned to the non-severe and severe groups, respectively. Based on the admission data of these two groups in the training cohort, albumin (odds ratio [OR] = 0.871, 95% confidence interval [CI]: 0.809 - 0.937, P < 0.001), d-dimer (OR = 1.289, 95% CI: 1.042 - 1.594, P = 0.019) and onset to hospitalization time (OR = 0.935, 95% CI: 0.895 - 0.977, P = 0.003) were identified as significant predictors for the severity of COVID-19 in elderly patients. By combining these predictors, an effective risk nomogram was established for accurate individualized assessment of the severity of COVID-19 in elderly patients. The concordance index of the nomogram was 0.800 in the training cohort and 0.774 in the validation cohort. The calibration curve demonstrated excellent consistency between the prediction of our nomogram and the observed curve. Decision curve analysis further showed that our nomogram conferred significantly high clinical net benefit. Collectively, our nomogram will facilitate early appropriate supportive care and better use of medical resources and finally reduce the poor outcomes of elderly COVID-19 patients.

摘要

2019年冠状病毒病(COVID-19)老年患者更易发生重症或危重症肺炎,病死率高。迄今为止,尚无预测老年COVID-19患者病情严重程度的模型。本研究将住院期间病情维持非重症的患者和进展为重症或危重症COVID-19的患者分别分为非重症组和重症组。基于训练队列中这两组患者的入院数据,白蛋白(比值比[OR]=0.871,95%置信区间[CI]:0.809 - 0.937,P<0.001)、D-二聚体(OR = 1.289,95%CI:1.042 - 1.594,P = 0.019)和发病至住院时间(OR = 0.935,95%CI:0.895 - 0.977,P = 0.003)被确定为老年COVID-19患者病情严重程度的显著预测因素。通过综合这些预测因素,建立了有效的风险列线图,用于准确个体化评估老年COVID-19患者的病情严重程度。该列线图在训练队列中的一致性指数为0.800,在验证队列中为0.774。校准曲线显示我们的列线图预测与观察曲线之间具有良好的一致性。决策曲线分析进一步表明,我们的列线图具有显著高的临床净效益。总体而言,我们的列线图将有助于早期进行适当的支持性治疗,更好地利用医疗资源,最终减少老年COVID-19患者的不良结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a861/7695402/cd2c3a23cee5/aging-12-103980-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验