Suppr超能文献

利用入院时常规实验室参数开发和验证列线图,以预测 COVID-19 患者的住院期间生存率。

Development and validation of a nomogram using on admission routine laboratory parameters to predict in-hospital survival of patients with COVID-19.

机构信息

Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

出版信息

J Med Virol. 2021 Apr;93(4):2332-2339. doi: 10.1002/jmv.26713. Epub 2020 Dec 23.

Abstract

To develop and validate a nomogram using on admission data to predict in-hospital survival probabilities of coronavirus disease 2019 (COVID-19) patients. We analyzed 855 COVID-19 patients with 52 variables. The least absolute shrinkage and selection operator regression and multivariate Cox analyses were used to screen significant factors associated with in-hospital mortality. A nomogram was established based on the variables identified by Cox regression. The performance of the model was evaluated by C-index and calibration plots. Decision curve analysis was conducted to determine the clinical utility of the nomogram. Six variables, including neutrophil (hazard ratio [HR], 1.088; 95% confidence interval [CI], [1.0004-1.147]; p < .001), C-reactive protein (HR, 1.007; 95% CI, [1.0026-1.011]; p = .002), IL-6 (HR, 1.001; 95% CI, [1.0003-1.002]; p = .005), d-dimer (HR, 1.034; 95% CI, [1.0111-1.057]; p = .003), prothrombin time (HR 1.086, 95% CI [1.0369-1.139], p < .001), and myoglobin (HR, 1.001; 95% CI, [1.0007-1.002]; p < .001), were identified and applied to develop a nomogram. The nomogram predicted 14-day and 28-day survival probabilities with reasonable accuracy, as assessed by the C-index (0.912) and calibration plots. Decision curve analysis showed relatively wide ranges of threshold probability, suggesting a high clinical value of the nomogram. Neutrophil, C-reactive protein, IL-6, d-dimer, prothrombin time, and myoglobin levels were significantly correlated with in-hospital mortality of COVID-19 patients. Demonstrating satisfactory discrimination and calibration, this model could predict patient outcomes as early as on admission and might serve as a useful triage tool for clinical decision making.

摘要

开发并验证一个基于入院数据的列线图模型,以预测 2019 年冠状病毒病(COVID-19)患者的院内生存率。我们分析了 855 例 COVID-19 患者的 52 个变量。采用最小绝对收缩和选择算子回归和多变量 Cox 分析筛选与院内死亡率相关的显著因素。基于 Cox 回归确定的变量建立列线图。通过 C 指数和校准图评估模型的性能。进行决策曲线分析以确定列线图的临床实用性。六个变量,包括中性粒细胞(危险比 [HR],1.088;95%置信区间 [CI],[1.0004-1.147];p<0.001)、C 反应蛋白(HR,1.007;95%CI,[1.0026-1.011];p=0.002)、IL-6(HR,1.001;95%CI,[1.0003-1.002];p=0.005)、D-二聚体(HR,1.034;95%CI,[1.0111-1.057];p=0.003)、凝血酶原时间(HR 1.086,95%CI [1.0369-1.139],p<0.001)和肌红蛋白(HR,1.001;95%CI,[1.0007-1.002];p<0.001),被确定并应用于开发列线图。该列线图通过 C 指数(0.912)和校准图评估,可较准确地预测 14 天和 28 天的生存率。决策曲线分析显示,阈值概率的范围较宽,表明该列线图具有较高的临床价值。中性粒细胞、C 反应蛋白、IL-6、D-二聚体、凝血酶原时间和肌红蛋白水平与 COVID-19 患者的院内死亡率显著相关。该模型具有良好的区分度和校准度,可在入院时早期预测患者的预后,可能成为临床决策的有用分诊工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验