Tomar Dheeraj S, Paulaitis Michael E, Pratt Lawrence R, Asthagiri Dilipkumar N
Xilio Therapeutics Inc., Waltham, Massachusetts 02451, United States.
Center for Nanomedicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States.
J Phys Chem Lett. 2020 Nov 19;11(22):9965-9970. doi: 10.1021/acs.jpclett.0c02972. Epub 2020 Nov 10.
We address the association of the hydrophobic driving forces in protein folding with the inverse temperature dependence of protein hydration, wherein stabilizing hydration effects strengthen with increasing temperature in a physiological range. All-atom calculations of the free energy of hydration of aqueous deca-alanine conformers, holistically including backbone and side-chain interactions together, show that attractive peptide-solvent interactions and the thermal expansion of the solvent dominate the inverse temperature signatures that have been interpreted traditionally as the hydrophobic stabilization of proteins in aqueous solution. Equivalent calculations on a methane solute are also presented as a benchmark for comparison. The present study calls for a reassessment of the forces that stabilize folded protein conformations in aqueous solutions and of the additivity of hydrophobic/hydrophilic contributions.
我们探讨了蛋白质折叠过程中的疏水驱动力与蛋白质水合作用的逆温度依赖性之间的关联,其中在生理范围内,稳定的水合作用会随着温度升高而增强。对十肽丙氨酸水溶液构象的水合自由能进行的全原子计算,全面考虑了主链和侧链相互作用,结果表明,有吸引力的肽 - 溶剂相互作用以及溶剂的热膨胀主导了传统上被解释为蛋白质在水溶液中的疏水稳定性的逆温度特征。还给出了对甲烷溶质的等效计算作为比较基准。本研究呼吁重新评估在水溶液中稳定折叠蛋白质构象的作用力以及疏水/亲水贡献的加和性。