Suppr超能文献

钛酸纳米管负载钌纳米颗粒光热催化一氧化碳还原为甲烷的机理研究

Study of the Photothermal Catalytic Mechanism of CO Reduction to CH by Ruthenium Nanoparticles Supported on Titanate Nanotubes.

作者信息

Novoa-Cid Maria, Baldovi Herme G

机构信息

Department of Chemistry, Universitat Politècnica de València, 46022 Valencia, Spain.

Instituto de Tecnología Química CSIC-UPV, Universitat Politènica de Valencia, 46022 Valencia, Spain.

出版信息

Nanomaterials (Basel). 2020 Nov 6;10(11):2212. doi: 10.3390/nano10112212.

Abstract

The Sabatier reaction could be a key tool for the future of the renewable energy field due to the potential of this reaction to produce either fuels or to stabilize H in the form of stable chemicals. For this purpose, a new composite made of ruthenium oxide nanoparticles (NPs) deposited on titanate nanotubes (TiNTs) was tested. Titanate nanotubes are a robust semiconductor with a one-dimensional (1D) morphology that results in a high contact area making this material suitable for photocatalysis. Small ruthenium nanoparticles (1.5 nm) were deposited on TiNTs at different ratios by Na-to-Ru ion exchanges followed by calcination. These samples were tested varying light power and temperature conditions to study the reaction mechanism during catalysis. Methanation of CO catalyzed by Ru/TiNT composite exhibit photonic and thermic contributions, and their ratios vary with temperature and light intensity. The synthesized composite achieved a production rate of 12.4 mmol CH·g·h equivalent to 110.7 mmol of CH·g·h under 150 mW/cm simulated sunlight irradiation at 210 °C. It was found that photo-response derives either from Ru nanoparticle excitation in the visible (VIS) and near-infrared (NIR) region (photothermal and plasmon excitation mechanism) or from TiNT excitation in the ultraviolet (UV) region leading to electron-hole separation and photoinduced electron transfer.

摘要

萨巴蒂尔反应可能是可再生能源领域未来的关键工具,因为该反应具有生产燃料或以稳定化学物质形式稳定氢的潜力。为此,测试了一种由沉积在钛酸盐纳米管(TiNTs)上的氧化钌纳米颗粒(NPs)制成的新型复合材料。钛酸盐纳米管是一种坚固的半导体,具有一维(1D)形态,导致高接触面积,使这种材料适用于光催化。通过钠与钌离子交换,然后进行煅烧,将小的钌纳米颗粒(1.5纳米)以不同比例沉积在TiNTs上。在不同的光功率和温度条件下对这些样品进行测试,以研究催化过程中的反应机理。Ru/TiNT复合材料催化的CO甲烷化表现出光子和热贡献,其比例随温度和光强度而变化。在210℃下,在150 mW/cm模拟太阳光照射下,合成的复合材料实现了12.4 mmol CH·g·h的产率,相当于110.7 mmol的CH·g·h。研究发现,光响应要么源于可见光(VIS)和近红外(NIR)区域中Ru纳米颗粒的激发(光热和等离子体激发机制),要么源于紫外(UV)区域中TiNT的激发,导致电子 - 空穴分离和光致电子转移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f98/7694752/e66c91bbb60c/nanomaterials-10-02212-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验