Solar Fuels Research Group, Center for Inorganic and Polymeric Nanomaterials Chemistry Department, 80 St. George Street, University of Toronto, Toronto, Ontario, Canada, M5S 3H6.
Adv Mater. 2015 Mar 18;27(11):1957-63. doi: 10.1002/adma.201500116. Epub 2015 Feb 5.
While the chemical energy in fossil fuels has enabled the rapid rise of modern civilization, their utilization and accompanying anthropogenic CO2 emissions is occurring at a rate that is outpacing nature's carbon cycle. Its effect is now considered to be irreversible and this could lead to the demise of human society. This is a complex issue without a single solution, yet from the burgeoning global research activity and development in the field of CO2 capture and utilization, there is light at the end of the tunnel. In this article a couple of recent advances are illuminated. Attention is focused on the discovery of gas-phase, light-assisted heterogeneous catalytic materials and processes for CO2 photoreduction that operate at sufficiently high rates and conversion efficiencies, and under mild conditions, to open a new pathway for an energy transition from today's "fossil fuel economy" to a new and sustainable "CO2 economy". Whichever of the competing CO2 capture and utilization approaches proves to be the best way forward for the development of a future CO2-based solar fuels economy, hopefully this can occur in a period short enough to circumvent the predicted adverse consequences of greenhouse gas climate change.
虽然化石燃料中的化学能源使现代文明得以迅速发展,但它们的利用和随之产生的人为 CO2 排放的速度已经超过了自然碳循环的速度。其影响现在被认为是不可逆转的,这可能导致人类社会的消亡。这是一个没有单一解决方案的复杂问题,但从蓬勃发展的全球研究活动和二氧化碳捕集与利用领域的发展来看,隧道尽头有了曙光。本文介绍了一些最近的进展。重点介绍了气相、光辅助多相催化材料和 CO2 光还原过程的发现,这些过程在足够高的速率和转化率下,在温和的条件下运行,为从当今的“化石燃料经济”向新的可持续的“CO2 经济”的能源转型开辟了一条新的途径。无论哪种竞争的 CO2 捕集和利用方法被证明是未来基于 CO2 的太阳能燃料经济发展的最佳途径,希望这能在足够短的时间内发生,以避免温室气体气候变化预测的不利后果。