Aix-Marseille Université, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille, Cedex 20, France.
INSERM, 33076 Bordeaux, Cedex, France.
Acc Chem Res. 2020 Dec 15;53(12):2828-2840. doi: 10.1021/acs.accounts.0c00457. Epub 2020 Nov 10.
In 1986, Rizzardo et al. discovered the nitroxide-mediated polymerization which relies on the reversibility of homolysis of the C-ON bond of alkoxyamine RRNOR, a unique property of these molecules. This discovery has generated a tremendous endeavor in the field of polymer chemistry. Alkoxyamines have been used as initiators/controllers for nitroxide-mediated polymerization. Moreover, photoexcitable alkoxyamines that dissociate under light at different wavelengths have also been developed for polymer chemistry. Over the past few years, alkoxyamines have started to be used in materials sciences. In many cases (e.g., self-healing polymers), the development of smart materials requires the use of smart building blocks, that is, molecules or systems whose properties and/or structures change upon external stimuli. Alkoxyamines exhibit a unique property: reversible homolysis (i.e., homolysis of the C-ON bond into alkyl R• and nitroxyl RRNO• radicals and reformation via the coupling of these two species). Until now, this property has been controlled only by changes in temperatures or by light irradiation. Chemical and/or biochemical control of the homolysis event would open new gates for the application of these molecules in different fields such as biology and medicine. Thus, the concept of smart alkoxyamines is discussed and exemplified via the activation of alkoxyamines using chemical or/and biochemical changes amplifying the polar, steric, and stabilization effects. activation is also discussed. It is shown that (i) increasing the electron-withdrawing properties of the alkyl fragment weakens the C-ON bond and thus favors homolysis but is opposite for the nitroxyl fragment; (ii) increasing the steric hindrance on the nonactive site affords dramatic conformation changes which weaken the C-ON bond; and (iii) increasing the stabilization of the released alkyl radical weakens the C-ON bond. Solvent effects and intramolecular hydrogen bonding are also discussed. Reactions used to highlight our purpose are either reversible or nonreversible and used under conditions that are as mild as possible (temperatures below 40 °C and atmospheric pressure). For example, a several (thousands of millions of) millions of orders of magnitude enhancement of the homolysis rate constant is observed upon enzymatic hydrolysis at 37 °C, meaning that a shift from a stable alkoxyamine ( = 42 000 milleniums) to a highly labile alkoxyamine ( = 1500 s for 35% conversion) is achieved. Applications of this concept are discussed for safe NMP initiators and for theranostic agents.
1986 年,Rizzardo 等人发现了氮氧自由基介导的聚合反应,该反应依赖于烷氧基胺 RRNOR 中 C-ON 键的均裂的可逆性,这是这些分子的独特性质。这一发现极大地推动了聚合物化学领域的发展。烷氧基胺已被用作氮氧自由基介导聚合的引发剂/控制器。此外,还开发出了在不同波长光下解离的光可激发的烷氧基胺,用于聚合物化学。在过去的几年中,烷氧基胺已开始应用于材料科学领域。在许多情况下(例如自修复聚合物),智能材料的发展需要使用智能构建块,即其性质和/或结构在外部刺激下发生变化的分子或系统。烷氧基胺具有独特的性质:可逆均裂(即 C-ON 键均裂为烷基 R•和氮氧自由基 RRNO•自由基,并通过这两种物质的偶联重新形成)。到目前为止,这种性质仅通过温度变化或光照射来控制。通过化学和/或生化控制均裂事件,将为这些分子在生物学和医学等不同领域的应用开辟新的途径。因此,本文通过使用化学或/和生化变化来放大极性、空间位阻和稳定化效应来激活烷氧基胺,讨论并举例说明了智能烷氧基胺的概念。还讨论了激活。结果表明:(i)增加烷基部分的吸电子性质会削弱 C-ON 键,从而有利于均裂,但对氮氧自由基部分则相反;(ii)增加非活性部位的空间位阻会导致构象发生剧烈变化,从而削弱 C-ON 键;(iii)释放的烷基自由基的稳定性增加会削弱 C-ON 键。溶剂效应和分子内氢键也进行了讨论。用于突出我们目的的反应要么是可逆的,要么是非可逆的,并且在尽可能温和的条件下(低于 40°C 和大气压)进行。例如,在 37°C 下进行酶水解时,观察到均裂速率常数增加了几个数量级(数十亿到数万亿),这意味着从稳定的烷氧基胺(= 42000 千年)转变为高度不稳定的烷氧基胺(= 1500 秒即可实现 35%的转化率)。本文还讨论了该概念在安全 NMP 引发剂和治疗诊断剂中的应用。