Suppr超能文献

胃内镜活检中用于病理诊断胃癌的深度学习算法的前瞻性验证和观察者性能研究。

A Prospective Validation and Observer Performance Study of a Deep Learning Algorithm for Pathologic Diagnosis of Gastric Tumors in Endoscopic Biopsies.

机构信息

VUNO Inc., Seocho-gu, Seoul, South Korea.

Department of Pathology, Jeju National University School of Medicine and Jeju National University Hospital, Jeju, South Korea.

出版信息

Clin Cancer Res. 2021 Feb 1;27(3):719-728. doi: 10.1158/1078-0432.CCR-20-3159. Epub 2020 Nov 10.

Abstract

PURPOSE

Gastric cancer remains the leading cause of cancer-related deaths in Northeast Asia. Population-based endoscopic screenings in the region have yielded successful results in early detection of gastric tumors. Endoscopic screening rates are continuously increasing, and there is a need for an automatic computerized diagnostic system to reduce the diagnostic burden. In this study, we developed an algorithm to classify gastric epithelial tumors automatically and assessed its performance in a large series of gastric biopsies and its benefits as an assistance tool.

EXPERIMENTAL DESIGN

Using 2,434 whole-slide images, we developed an algorithm based on convolutional neural networks to classify a gastric biopsy image into one of three categories: negative for dysplasia (NFD), tubular adenoma, or carcinoma. The performance of the algorithm was evaluated by using 7,440 biopsy specimens collected prospectively. The impact of algorithm-assisted diagnosis was assessed by six pathologists using 150 gastric biopsy cases.

RESULTS

Diagnostic performance evaluated by the AUROC curve in the prospective study was 0.9790 for two-tier classification: negative (NFD) versus positive (all cases except NFD). When limited to epithelial tumors, the sensitivity and specificity were 1.000 and 0.9749. Algorithm-assisted digital image viewer (DV) resulted in 47% reduction in review time per image compared with DV only and 58% decrease to microscopy.

CONCLUSIONS

Our algorithm has demonstrated high accuracy in classifying epithelial tumors and its benefits as an assistance tool, which can serve as a potential screening aid system in diagnosing gastric biopsy specimens.

摘要

目的

胃癌仍然是东北亚地区癌症相关死亡的主要原因。该地区基于人群的内镜筛查在早期发现胃肿瘤方面取得了成功。内镜筛查率不断提高,因此需要一种自动计算机诊断系统来减轻诊断负担。在这项研究中,我们开发了一种自动分类胃上皮肿瘤的算法,并评估了其在大量胃活检中的性能及其作为辅助工具的益处。

实验设计

使用 2434 张全切片图像,我们开发了一种基于卷积神经网络的算法,将胃活检图像分为三类之一:无发育不良(NFD)、管状腺瘤或癌。通过前瞻性收集的 7440 个活检标本评估算法的性能。通过六位病理学家使用 150 例胃活检病例评估算法辅助诊断的影响。

结果

前瞻性研究中通过 AUROC 曲线评估的诊断性能为两级分类:阴性(NFD)与阳性(除 NFD 以外的所有病例)的 0.9790。当仅限于上皮肿瘤时,敏感性和特异性分别为 1.000 和 0.9749。与仅使用数字图像查看器(DV)相比,算法辅助的数字图像查看器(DV)可将每张图像的审查时间减少 47%,与显微镜相比减少 58%。

结论

我们的算法在分类上皮肿瘤方面表现出很高的准确性,并且作为辅助工具具有益处,可以作为诊断胃活检标本的潜在筛查辅助系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验