Wang Chunbao, Ge Jiusong, Niu Yi, Ding Caixia, Fan Yangyang, Chang Hongyun, Yang Zhe, Ran Caihong, Teng Xiali, Wang Xiaolin, Wu Lianlian, Gao Zeyu, Li Chen
School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.
Sci Data. 2025 Jul 30;12(1):1326. doi: 10.1038/s41597-025-05679-1.
Gastric cancer, a significant global health concern, exhibits high morbidity and mortality, especially in advanced stages. Timely diagnosis and intervention are crucial for improving patient outcomes, with Endoscopic Submucosal Dissection (ESD) playing a pivotal role in precise, minimally invasive early-stage treatments. Despite its importance, challenges include significant interobserver variability among pathologists and the intensive labor required for detailed pathological analysis of ESD specimens impede optimal outcomes. Artificial Intelligence (AI) offers promising solutions to these challenges, yet its advancement is limited by the scarcity of comprehensive, annotated pathological datasets. In this paper, we curate a fully annotated pathology slide dataset for ESD specimen examination. This dataset not only poses a challenging task for the computational pathology field but also enables precise detection of precancerous stages and accurate quantification of lesion distribution in patients with early-stage gastric lesions. Furthermore, it enhances the correlation between endoscopic findings and pathological interpretations, thereby advancing precision medicine strategies in the prevention and treatment of early gastric cancer.
胃癌是一个重大的全球健康问题,发病率和死亡率都很高,尤其是在晚期。及时诊断和干预对于改善患者预后至关重要,内镜下黏膜下剥离术(ESD)在精确、微创的早期治疗中发挥着关键作用。尽管其很重要,但挑战包括病理学家之间显著的观察者间差异,以及对ESD标本进行详细病理分析所需的高强度劳动阻碍了最佳治疗效果。人工智能(AI)为这些挑战提供了有前景的解决方案,但其发展受到全面、注释病理数据集稀缺的限制。在本文中,我们整理了一个用于ESD标本检查的完全注释病理切片数据集。该数据集不仅对计算病理学领域提出了具有挑战性的任务,还能够精确检测癌前阶段,并准确量化早期胃病变患者的病变分布。此外,它增强了内镜检查结果与病理解读之间的相关性,从而推进早期胃癌预防和治疗中的精准医学策略。