Moreno-Ulloa Aldo, Sicairos Diaz Victoria, Tejeda-Mora Javier A, Macias Contreras Marla I, Castillo Fernando Díaz, Guerrero Abraham, Gonzalez Sanchez Ricardo, Mendoza-Porras Omar, Vazquez Duhalt Rafael, Licea-Navarro Alexei
Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada, México.
Consorcio de Investigación del Golfo de México (CIGOM), CICESE, Ensenada, México.
mSystems. 2020 Nov 10;5(6):e00824-20. doi: 10.1128/mSystems.00824-20.
Marine microbes are known to degrade hydrocarbons; however, microbes inhabiting deep-sea sediments remain largely unexplored. Previous studies into the classical pathways of marine microbial metabolism reveal diverse chemistries; however, metabolic profiling of marine microbes cultured with hydrocarbons is limited. In this study, taxonomic (amplicon sequencing) profiles of two environmental deep-sea sediments (>1,200 m deep) were obtained, along with taxonomic and metabolomic (mass spectrometry-based metabolomics) profiles of microbes harbored in deep-sea sediments cultured with hydrocarbons as the sole energy source. Samples were collected from the Gulf of México (GM) and cultured for 28 days using simple (toluene, benzene, hexadecane, and naphthalene) and complex (petroleum API 40) hydrocarbon mixtures as the sole energy sources. The sediment samples harbored diverse microbial communities predominantly classified into and families, whereas and families prevailed after sediments were cultured with hydrocarbons. Chemical profiling of microbial metabolomes revealed diverse chemical groups belonging primarily to the lipids and lipid-like molecules superclass, as well as the organoheterocyclic compound superclass (ClassyFire annotation). Metabolomic data and prediction of functional profiles indicated an increase in aromatic and alkane degradation in samples cultured with hydrocarbons. Previously unreported metabolites, identified as intermediates in the degradation of hydrocarbons, were annotated as hydroxylated polyunsaturated fatty acids and carboxylated benzene derivatives. In summary, this study used mass spectrometry-based metabolomics coupled to chemoinformatics to demonstrate how microbes from deep-sea sediments could be cultured in the presence of hydrocarbons. This study also highlights how this experimental approach can be used to increase the understanding of hydrocarbon degradation by deep-sea sediment microbes. High-throughput technologies and emerging informatics tools have significantly advanced knowledge of hydrocarbon metabolism by marine microbes. However, research into microbes inhabiting deep-sea sediments (>1,000 m) is limited compared to those found in shallow waters. In this study, a nontargeted and nonclassical approach was used to examine the diversity of bacterial taxa and the metabolic profiles of hydrocarbon-degrading deep-sea microbes. In conclusion, this study used metabolomics and chemoinformatics to demonstrate that microbes from deep-sea sediment origin thrive in the presence of toxic and difficult-to-metabolize hydrocarbons. Notably, this study provides evidence of previously unreported metabolites and the global chemical repertoire associated with the metabolism of hydrocarbons by deep-sea microbes.
已知海洋微生物能够降解碳氢化合物;然而,栖息于深海沉积物中的微生物在很大程度上仍未得到充分研究。此前对海洋微生物代谢经典途径的研究揭示了多样的化学过程;然而,对以碳氢化合物培养的海洋微生物进行代谢谱分析的研究却很有限。在本研究中,我们获取了两份环境深海沉积物(深度大于1200米)的分类学(扩增子测序)图谱,以及以碳氢化合物作为唯一能源培养的深海沉积物中微生物的分类学和代谢组学(基于质谱的代谢组学)图谱。样本采集自墨西哥湾(GM),并使用简单(甲苯、苯、十六烷和萘)和复杂(石油API 40)碳氢化合物混合物作为唯一能源培养28天。沉积物样本中含有多样的微生物群落,主要归类于 和 科,而在用碳氢化合物培养沉积物后, 和 科占主导地位。微生物代谢组的化学图谱揭示了主要属于脂质和类脂分子超类以及有机杂环化合物超类(ClassyFire注释)的多样化学基团。代谢组学数据和功能谱预测表明,在用碳氢化合物培养的样本中,芳香烃和烷烃降解有所增加。先前未报道的代谢物被鉴定为碳氢化合物降解的中间体,注释为羟基化多不饱和脂肪酸和羧基化苯衍生物。总之,本研究使用基于质谱的代谢组学结合化学信息学来证明深海沉积物中的微生物如何在碳氢化合物存在的情况下进行培养。本研究还强调了这种实验方法如何用于增进对深海沉积物微生物降解碳氢化合物的理解。高通量技术和新兴的信息学工具显著推进了对海洋微生物碳氢化合物代谢的认识。然而,与浅水区发现的微生物相比,对栖息于深海沉积物(大于1000米)中的微生物的研究仍然有限。在本研究中,采用了一种非靶向和非经典的方法来研究碳氢化合物降解深海微生物的细菌分类多样性和代谢谱。总之,本研究使用代谢组学和化学信息学来证明源自深海沉积物的微生物在有毒且难代谢的碳氢化合物存在的情况下能够茁壮成长。值得注意的是,本研究提供了先前未报道的代谢物以及与深海微生物碳氢化合物代谢相关的全球化学库的证据。