Suppr超能文献

基于质谱的植物次生代谢产物全分析揭示了世界性大科鼠李科植物代谢多样性。

Comprehensive mass spectrometry-guided phenotyping of plant specialized metabolites reveals metabolic diversity in the cosmopolitan plant family Rhamnaceae.

机构信息

Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.

College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Korea.

出版信息

Plant J. 2019 Jun;98(6):1134-1144. doi: 10.1111/tpj.14292. Epub 2019 Mar 25.

Abstract

Plants produce a myriad of specialized metabolites to overcome their sessile habit and combat biotic as well as abiotic stresses. Evolution has shaped the diversity of specialized metabolites, which then drives many other aspects of plant biodiversity. However, until recently, large-scale studies investigating the diversity of specialized metabolites in an evolutionary context have been limited by the impossibility of identifying chemical structures of hundreds to thousands of compounds in a time-feasible manner. Here we introduce a workflow for large-scale, semi-automated annotation of specialized metabolites and apply it to over 1000 metabolites of the cosmopolitan plant family Rhamnaceae. We enhance the putative annotation coverage dramatically, from 2.5% based on spectral library matches alone to 42.6% of total MS/MS molecular features, extending annotations from well-known plant compound classes into dark plant metabolomics. To gain insights into substructural diversity within this plant family, we also extract patterns of co-occurring fragments and neutral losses, so-called Mass2Motifs, from the dataset; for example, only the Ziziphoid clade developed the triterpenoid biosynthetic pathway, whereas the Rhamnoid clade predominantly developed diversity in flavonoid glycosides, including 7-O-methyltransferase activity. Our workflow provides the foundations for the automated, high-throughput chemical identification of massive metabolite spaces, and we expect it to revolutionize our understanding of plant chemoevolutionary mechanisms.

摘要

植物产生了大量的特殊代谢物,以克服其固着生活方式,并抵御生物和非生物胁迫。进化塑造了特殊代谢物的多样性,进而推动了植物生物多样性的许多其他方面。然而,直到最近,在进化背景下研究特殊代谢物多样性的大规模研究一直受到限制,因为不可能在时间可行的情况下识别数百到数千种化合物的化学结构。在这里,我们介绍了一种用于大规模、半自动注释特殊代谢物的工作流程,并将其应用于全球范围内的李科植物家族的 1000 多种代谢物。我们通过仅基于光谱库匹配的假设注释覆盖率从 2.5%显著提高到总 MS/MS 分子特征的 42.6%,将注释从众所周知的植物化合物类扩展到暗植物代谢组学。为了深入了解该植物家族内的亚结构多样性,我们还从数据集中提取了共同出现的片段和中性丢失的模式,即所谓的 Mass2Motifs;例如,只有枣属进化出了三萜生物合成途径,而鼠李属主要在类黄酮糖苷中发展了多样性,包括 7-O-甲基转移酶活性。我们的工作流程为大规模、高通量的代谢物空间化学鉴定提供了基础,我们预计它将彻底改变我们对植物化学生态进化机制的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验