基于扩增子或宏基因组序列的微生物群落的预测代谢组学分析。
Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences.
机构信息
Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
出版信息
Nat Commun. 2019 Jul 17;10(1):3136. doi: 10.1038/s41467-019-10927-1.
Microbial community metabolomics, particularly in the human gut, are beginning to provide a new route to identify functions and ecology disrupted in disease. However, these data can be costly and difficult to obtain at scale, while amplicon or shotgun metagenomic sequencing data are readily available for populations of many thousands. Here, we describe a computational approach to predict potentially unobserved metabolites in new microbial communities, given a model trained on paired metabolomes and metagenomes from the environment of interest. Focusing on two independent human gut microbiome datasets, we demonstrate that our framework successfully recovers community metabolic trends for more than 50% of associated metabolites. Similar accuracy is maintained using amplicon profiles of coral-associated, murine gut, and human vaginal microbiomes. We also provide an expected performance score to guide application of the model in new samples. Our results thus demonstrate that this 'predictive metabolomic' approach can aid in experimental design and provide useful insights into the thousands of community profiles for which only metagenomes are currently available.
微生物群落代谢组学,特别是在人类肠道中,开始为识别疾病中功能和生态失调提供新途径。然而,这些数据可能成本高昂,并且难以大规模获取,而扩增子或鸟枪法宏基因组测序数据则很容易获得数千个样本。在这里,我们描述了一种计算方法,可以根据在感兴趣的环境中对配对代谢组和宏基因组进行训练的模型,预测新微生物群落中潜在未观察到的代谢物。我们专注于两个独立的人类肠道微生物组数据集,证明了我们的框架成功地恢复了超过 50%相关代谢物的群落代谢趋势。使用珊瑚相关、鼠肠道和人阴道微生物组的扩增子图谱可以保持相似的准确性。我们还提供了预期的性能得分,以指导模型在新样本中的应用。因此,我们的结果表明,这种“预测代谢组学”方法可以帮助进行实验设计,并为目前仅可获得宏基因组的数千个群落图谱提供有用的见解。