Suppr超能文献

肝素和依诺肝素衍生物对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)进入的有效抑制作用

Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives.

作者信息

Tandon Ritesh, Sharp Joshua S, Zhang Fuming, Pomin Vitor H, Ashpole Nicole M, Mitra Dipanwita, McCandless Martin G, Jin Weihua, Liu Hao, Sharma Poonam, Linhardt Robert J

机构信息

Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA.

Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA

出版信息

J Virol. 2021 Jan 13;95(3). doi: 10.1128/JVI.01987-20.

Abstract

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic, or prophylactic. As with other betacoronaviruses, attachment and entry of SARS-CoV-2 are mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin-converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third-generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in antiviral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6--desulfated UFH, and 6--desulfated enoxaparin with 50% inhibitory concentrations (ICs) of 5.99 μg/liter, 1.08 mg/liter, 1.77 μg/liter, and 5.86 mg/liter, respectively. In summary, several sulfated polysaccharides show potent anti-SARS-CoV-2 activity and can be developed for prophylactic as well as therapeutic purposes. The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in Wuhan, China, in late 2019 and its subsequent spread to the rest of the world has created a pandemic situation unprecedented in modern history. While ACE2 has been identified as the viral receptor, cellular polysaccharides have also been implicated in virus entry. The SARS-CoV-2 spike glycoprotein (SGP) binds to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we report structure-based differences in antiviral activity and affinity to SGP for several sulfated polysaccharides, including both well-characterized FDA-approved drugs and novel marine sulfated polysaccharides, which can be developed for prophylactic as well as therapeutic purposes.

摘要

严重急性呼吸综合征相关冠状病毒2(SARS-CoV-2)已引发了一场具有历史规模的大流行,并且仍在全球范围内传播,对人类健康造成了巨大影响。目前尚无疫苗、有效的治疗方法或预防措施。与其他β冠状病毒一样,SARS-CoV-2的附着和进入是由刺突糖蛋白(SGP)介导的。除了其与受体人类血管紧张素转换酶2(hACE2)的相互作用已被充分证明外,还发现SGP可与硫酸乙酰肝素等糖胺聚糖结合,而硫酸乙酰肝素几乎存在于所有哺乳动物细胞的表面。在此,我们在第三代慢病毒(pLV)载体上对SARS-CoV-2 SGP进行假型化,并测试了各种硫酸化多糖对哺乳动物细胞转导效率的影响。假型化SGP的pLV载体在HEK293T细胞上高效产生且滴度高。各种硫酸化多糖能有效中和假型化pLV-S的病毒,其抗病毒活性和对SGP的亲和力存在基于结构的明显差异。浓度-反应曲线表明,一系列浓度的未分级肝素(UFH)、依诺肝素、6-O-去硫酸化UFH和6-O-去硫酸化依诺肝素能有效中和pLV-S颗粒,其50%抑制浓度(IC50)分别为5.99μg/升、1.08mg/升、1.77μg/升和5.86mg/升。总之,几种硫酸化多糖显示出强大的抗SARS-CoV-2活性,可开发用于预防和治疗目的。2019年末,严重急性呼吸综合征冠状病毒(SARS-CoV-2)在中国武汉出现,并随后传播到世界其他地区,造成了现代历史上前所未有的大流行局面。虽然ACE2已被确定为病毒受体,但细胞多糖也与病毒进入有关。SARS-CoV-2刺突糖蛋白(SGP)可与硫酸乙酰肝素等糖胺聚糖结合,而硫酸乙酰肝素几乎存在于所有哺乳动物细胞的表面。在此,我们报告了几种硫酸化多糖在抗病毒活性和对SGP的亲和力方面基于结构的差异,这些多糖包括已被充分表征的FDA批准药物和新型海洋硫酸化多糖,可开发用于预防和治疗目的。

相似文献

1
Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives.
J Virol. 2021 Jan 13;95(3). doi: 10.1128/JVI.01987-20.
2
Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives.
bioRxiv. 2020 Jul 28:2020.06.08.140236. doi: 10.1101/2020.06.08.140236.
3
Marine sulfated glycans inhibit the interaction of heparin with S-protein of SARS-CoV-2 Omicron XBB variant.
Glycoconj J. 2024 Apr;41(2):163-174. doi: 10.1007/s10719-024-10150-1. Epub 2024 Apr 20.
4
Antiviral efficacy of heparan sulfate and enoxaparin sodium against SARS-CoV-2.
Arch Pharm (Weinheim). 2025 Jan;358(1):e2400545. doi: 10.1002/ardp.202400545. Epub 2024 Nov 9.
5
SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2.
Cell. 2020 Nov 12;183(4):1043-1057.e15. doi: 10.1016/j.cell.2020.09.033. Epub 2020 Sep 14.

引用本文的文献

2
Applications of Surface Plasmon Resonance in Heparan Sulfate Interactome Research.
Biomedicines. 2025 Jun 14;13(6):1471. doi: 10.3390/biomedicines13061471.
3
Identification of an Unnatural Sulfated Monosaccharide as a High-Affinity Ligand for Pan-Variant Targeting of SARS-CoV-2 Spike Glycoprotein.
ACS Chem Biol. 2025 Jun 20;20(6):1394-1405. doi: 10.1021/acschembio.5c00206. Epub 2025 May 13.
4
encodes a novel cytoadhesin of binding to heparin.
Infect Immun. 2025 May 13;93(5):e0060624. doi: 10.1128/iai.00606-24. Epub 2025 Apr 23.
5
Heparan sulfate proteoglycans remodel SARS-CoV-2 spike conformation to allow integrin interaction and infection of endothelial cells.
Front Cell Infect Microbiol. 2025 Apr 3;15:1552116. doi: 10.3389/fcimb.2025.1552116. eCollection 2025.
6
Efficacy of dispirotripiperazine PDSTP in a golden Syrian hamster model of SARS-CoV-2 infection.
Front Microbiol. 2025 Mar 10;16:1546946. doi: 10.3389/fmicb.2025.1546946. eCollection 2025.
7
Sustainable and biocompatible hybrid materials-based sulfated polysaccharides for biomedical applications: a review.
RSC Adv. 2025 Feb 14;15(6):4708-4767. doi: 10.1039/d4ra07277d. eCollection 2025 Feb 6.
9
Inhibition of sulfated glycans on the binding of dengue virus envelope protein to heparin.
Glycoconj J. 2024 Dec;41(6):371-380. doi: 10.1007/s10719-024-10172-9. Epub 2024 Dec 16.
10
Antiviral efficacy of heparan sulfate and enoxaparin sodium against SARS-CoV-2.
Arch Pharm (Weinheim). 2025 Jan;358(1):e2400545. doi: 10.1002/ardp.202400545. Epub 2024 Nov 9.

本文引用的文献

2
SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2.
Cell. 2020 Nov 12;183(4):1043-1057.e15. doi: 10.1016/j.cell.2020.09.033. Epub 2020 Sep 14.
3
Targeted therapy strategies against SARS-CoV-2 cell entry mechanisms: A systematic review of in vitro and in vivo studies.
J Cell Physiol. 2021 Apr;236(4):2364-2392. doi: 10.1002/jcp.30032. Epub 2020 Sep 9.
6
Vaccines and Therapies in Development for SARS-CoV-2 Infections.
J Clin Med. 2020 Jun 16;9(6):1885. doi: 10.3390/jcm9061885.
7
SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes.
Nat Med. 2020 May;26(5):681-687. doi: 10.1038/s41591-020-0868-6. Epub 2020 Apr 23.
8
Role of Protein Glycosylation in Host-Pathogen Interaction.
Cells. 2020 Apr 20;9(4):1022. doi: 10.3390/cells9041022.
9
Virological assessment of hospitalized patients with COVID-2019.
Nature. 2020 May;581(7809):465-469. doi: 10.1038/s41586-020-2196-x. Epub 2020 Apr 1.
10
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验