Sánchez Jazmín Aragón, Rumi Gonzalo, Maldonado Raúl Cortés, Bolecek Néstor René Cejas, Puig Joaquín, Pedrazzini Pablo, Nieva Gladys, Dolz Moira I, Konczykowski Marcin, van der Beek Cornelis J, Kolton Alejandro B, Fasano Yanina
Centro Atómico Bariloche and Instituto Balseiro, CNEA, CONICET and Universidad Nacional de Cuyo, 8400, San Carlos de Bariloche, Argentina.
Universidad Nacional de San Luis and Instituto de Física Aplicada, CONICET, 5700, San Luis, Argentina.
Sci Rep. 2020 Nov 10;10(1):19452. doi: 10.1038/s41598-020-76529-w.
Inferring the nature of disorder in the media where elastic objects are nucleated is of crucial importance for many applications but remains a challenging basic-science problem. Here we propose a method to discern whether weak-point or strong-correlated disorder dominates based on characterizing the distribution of the interaction forces between objects mapped in large fields-of-view. We illustrate our proposal with the case-study system of vortex structures nucleated in type-II superconductors with different pinning landscapes. Interaction force distributions are computed from individual vortex positions imaged in thousands-vortices fields-of-view in a two-orders-of-magnitude-wide vortex-density range. Vortex structures nucleated in point-disordered media present Gaussian distributions of the interaction force components. In contrast, if the media have dilute and randomly-distributed correlated disorder, these distributions present non-Gaussian algebraically-decaying tails for large force magnitudes. We propose that detecting this deviation from the Gaussian behavior is a fingerprint of strong disorder, in our case originated from a dilute distribution of correlated pinning centers.
推断弹性物体成核的介质中的无序性质对于许多应用至关重要,但仍然是一个具有挑战性的基础科学问题。在这里,我们提出了一种方法,通过表征在大视场中映射的物体之间的相互作用力分布,来辨别是弱点无序还是强相关无序起主导作用。我们以在具有不同钉扎态势的II型超导体中成核的涡旋结构的案例研究系统来说明我们的提议。相互作用力分布是根据在两个数量级宽的涡旋密度范围内、数千个涡旋视场中成像的单个涡旋位置计算得出的。在点无序介质中成核的涡旋结构呈现出相互作用力分量的高斯分布。相反,如果介质具有稀疏且随机分布的相关无序,则这些分布在大力值时呈现非高斯代数衰减尾部。我们提出,检测这种偏离高斯行为是强无序的一个特征,在我们的案例中,它源于相关钉扎中心的稀疏分布。