Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, No. 2006 Xiyuan Ave West Hi-Tech Zone, Chengdu 611731, China.
Mol Omics. 2021 Feb 1;17(1):86-94. doi: 10.1039/d0mo00103a. Epub 2020 Nov 11.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an etiological agent of the current rapidly growing outbreak of coronavirus disease (COVID-19), which is straining health systems around the world. Disrupting the intermolecular association of SARS-CoV-2 spike glycoprotein (S protein) with its cell surface receptor human angiotensin-converting enzyme 2 (hACE2) has been recognized as a promising therapeutic strategy against COVID-19. The association is a typical peptide-mediated interaction, where the hACE adopts an α1-helix, which can form a two-helix bundle with the α2-helix, to pack against a flat pocket on the S protein surface. Here, we demonstrate that the protein context of full-length hACE plays an essential role in supporting the hACE2 α1-helix recognition by viral S protein. Energetic analysis reveals that the α1-helical peptide (αHP) and also the two-helix bundle peptide (tBP) cannot bind effectively to S protein when they are split from the hACE protein. The context contributes moderately and considerably to the direct readout (DR) and indirect readout (IR) of peptide recognition, respectively. Dynamics simulation suggests that the two free peptides exhibit a large intrinsic disorder without the support of protein context, which would incur a considerable entropy penalty upon binding to S protein. To restore the IR effect lost by splitting peptides from hACE, we herein propose employing hydrocarbon stapling and cyclization strategies to constrain the free αHP and tBP peptides into their native ordered conformations, respectively. The stapling and cyclization are carefully designed in order to avoid influencing the peptide DR effect, which has been demonstrated to improve the peptide binding affinity (but not specificity) to S protein. The stapling/cyclization-imposed conformational constraint can effectively minimize the unfavorable IR effect (i) by reducing the peptide flexibility and entropy cost upon their binding to S protein, and (ii) by helping peptide pre-folding into their native state to facilitate the conformational selection by S protein.
严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)是当前迅速蔓延的冠状病毒病(COVID-19)的病原体,正在给世界各地的卫生系统带来压力。阻断 SARS-CoV-2 刺突糖蛋白(S 蛋白)与其细胞表面受体人血管紧张素转换酶 2(hACE2)之间的分子间缔合,已被认为是对抗 COVID-19 的一种有前途的治疗策略。这种结合是一种典型的肽介导相互作用,其中 hACE 采用α1-螺旋,它可以与α2-螺旋形成双螺旋束,以对抗 S 蛋白表面的扁平口袋。在这里,我们证明全长 hACE 的蛋白质结构在支持病毒 S 蛋白识别 hACE2α1-螺旋方面起着至关重要的作用。能量分析表明,当α1-螺旋肽(αHP)和双螺旋束肽(tBP)从 hACE 蛋白中分裂出来时,它们不能有效地与 S 蛋白结合。结构域分别适度和显著地促进了肽识别的直接读出(DR)和间接读出(IR)。动力学模拟表明,在没有蛋白质结构域支持的情况下,两个游离肽表现出很大的固有无序性,这将在与 S 蛋白结合时产生相当大的熵罚。为了恢复由于从 hACE 中分裂肽而丧失的 IR 效应,我们在此提出使用烃链 stapling 和环化策略将游离的αHP 和 tBP 肽分别约束到其天然有序构象。stapling 和环化的设计非常精细,以避免影响肽的 DR 效应,这已被证明可以提高肽与 S 蛋白的结合亲和力(但不是特异性)。stapling/cyclization 施加的构象约束可以有效地最小化不利的 IR 效应(i)通过降低肽与 S 蛋白结合时的灵活性和熵成本,以及(ii)通过帮助肽预折叠到其天然状态,以促进 S 蛋白的构象选择。