Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil.
Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, São Paulo, SP 13083-970, Brazil.
J Chem Inf Model. 2021 Mar 22;61(3):1226-1243. doi: 10.1021/acs.jcim.0c01320. Epub 2021 Feb 23.
Angiotensin-converting enzyme 2 (ACE2) is the host cellular receptor that locks onto the surface spike protein of the 2002 SARS coronavirus (SARS-CoV-1) and of the novel, highly transmissible and deadly 2019 SARS-CoV-2, responsible for the COVID-19 pandemic. One strategy to avoid the virus infection is to design peptides by extracting the human ACE2 peptidase domain α-helix, which would bind to the coronavirus surface protein, preventing the virus entry into the host cells. The natural α-helix peptide has a stronger affinity to SARS-CoV-2 than to SARS-CoV-1. Another peptide was designed by joining α with the second portion of ACE2 that is far in the peptidase sequence yet grafted in the spike protein interface with ACE2. Previous studies have shown that, among several α-based peptides, the hybrid peptidic scaffold is the one with the highest/strongest affinity for SARS-CoV-1, which is comparable to the full-length ACE2 affinity. In this work, binding and folding dynamics of the natural and designed ACE2-based peptides were simulated by the well-known coarse-grained structure-based model, with the computed thermodynamic quantities correlating with the experimental binding affinity data. Furthermore, theoretical kinetic analysis of native contact formation revealed the distinction between these processes in the presence of the different binding partners SARS-CoV-1 and SARS-CoV-2 spike domains. Additionally, our results indicate the existence of a two-state folding mechanism for the designed peptide en route to bind to the spike proteins, in contrast to a downhill mechanism for the natural α-helix peptides. The presented low-cost simulation protocol demonstrated its efficiency in evaluating binding affinities and identifying the mechanisms involved in the neutralization of spike-ACE2 interaction by designed peptides. Finally, the protocol can be used as a computer-based screening of more potent designed peptides by experimentalists searching for new therapeutics against COVID-19.
血管紧张素转化酶 2(ACE2)是宿主细胞受体,可与 2002 年 SARS 冠状病毒(SARS-CoV-1)和新型高传染性和致命性 2019 年 SARS-CoV-2 的表面刺突蛋白结合,导致 COVID-19 大流行。避免病毒感染的一种策略是通过提取人类 ACE2 肽酶结构域α-螺旋设计肽,该肽将与冠状病毒表面蛋白结合,从而阻止病毒进入宿主细胞。天然α-螺旋肽与 SARS-CoV-2 的亲和力比 SARS-CoV-1 更强。另一种肽是通过将α与 ACE2 的第二部分连接设计的,ACE2 的第二部分在肽酶序列中很远,但在 ACE2 的刺突蛋白界面中接枝。先前的研究表明,在几种基于α的肽中,杂合肽骨架与 SARS-CoV-1 的亲和力最高/最强,与全长 ACE2 的亲和力相当。在这项工作中,天然和设计的基于 ACE2 的肽的结合和折叠动力学通过著名的粗粒度结构基模型进行了模拟,计算出的热力学量与实验结合亲和力数据相关。此外,对天然接触形成的理论动力学分析揭示了在存在不同结合伴侣 SARS-CoV-1 和 SARS-CoV-2 刺突结构域的情况下,这些过程之间的区别。此外,我们的结果表明,与天然α-螺旋肽相反,设计的肽在与刺突蛋白结合的过程中存在两态折叠机制。所提出的低成本模拟方案证明了其在评估结合亲和力和确定设计肽中和刺突-ACE2 相互作用的机制方面的效率。最后,该方案可用于实验人员基于计算机筛选更有效的设计肽,以寻找针对 COVID-19 的新疗法。