Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, Münster 48149, Germany.
Center for Nanotechnology, Heisenbergstraße 11, Münster 48149, Germany.
J Phys Chem B. 2020 Dec 3;124(48):10879-10888. doi: 10.1021/acs.jpcb.0c06343. Epub 2020 Nov 11.
In response to external stimuli, molecular motors enable to control phenomena at the molecular scale with high precision. In order to utilize their unique properties and to gain designated functionalities, their molecular embedding is important. Despite the great progress in the development of corresponding functional materials, a detailed picture of how the structural and dynamic properties of these responsive molecular units are transferred to a macroscopic outcome is so-far missing. Here, we provide an atomistic insight into the solvation dynamics around a light-driven molecular motor. By performing molecular dynamic simulations based on an ab initio parametrized and validated force field, we elucidate in detail the intermolecular interactions depending on the state of the motor. Detailed analysis of the solvation shells revealed the impact on both the location of the primary interaction sites and the orientation of the solvent molecules with respect to the molecular motor. Furthermore, we studied the influence of structural modifications of the molecular motor on its local environment. By investigating the motor-solvent interaction, our results provide a strong foundation to decipher the ability of molecular machines to specifically alter molecular processes, which is fundamental to predict and tailor the resulting macroscopic functionality.
响应外部刺激,分子马达能够高精度地控制分子尺度上的现象。为了利用它们独特的性质并获得指定的功能,它们的分子嵌入是很重要的。尽管在相应功能材料的发展方面取得了巨大的进展,但到目前为止,关于这些响应性分子单元的结构和动态性质如何传递到宏观结果的详细情况还不清楚。在这里,我们提供了一个原子尺度的见解,了解光驱动分子马达周围的溶剂动力学。通过基于从头计算参数化和验证力场的分子动力学模拟,我们详细阐明了依赖于马达状态的分子间相互作用。对溶剂化壳的详细分析揭示了对主要相互作用位点的位置和溶剂分子相对于分子马达的取向的影响。此外,我们研究了分子马达结构修饰对其局部环境的影响。通过研究马达-溶剂相互作用,我们的结果为破译分子机器改变特定分子过程的能力提供了坚实的基础,这对于预测和调整由此产生的宏观功能至关重要。