Chong Dan, Hu Bingliang, Gao Xiaohui, Gao Hao, Xia Pu, Wu Yinhua
Appl Opt. 2020 Nov 1;59(31):9633-9642. doi: 10.1364/AO.400563.
Hyperspectral anomaly detection has garnered much research in recent years due to the excellent detection ability of hyperspectral remote sensing in agriculture, forestry, geological surveys, environmental monitoring, and battlefield target detection. The traditional anomaly detection method ignores the non-linearity and complexity of the hyperspectral image (HSI), while making use of the effectiveness of spatial information rarely. Besides, the anomalous pixels and the background are mixed, which causes a higher false alarm rate in the detection result. In this paper, a hyperspectral deep net-based anomaly detector using weight adjustment strategy (WAHyperDNet) is proposed to circumvent the above issues. We leverage three-dimensional convolution instead of the two-dimensional convolution to get a better way of handling high-dimensional data. In this study, the determinative spectrum-spatial features are extracted across the correlation between HSI pixels. Moreover, feature weights in the method are automatically generated based on absolute distance and the spectral similarity angle to describe the differences between the background pixels and the pixels to be tested. Experimental results on five public datasets show that the proposed approach outperforms the state-of-the-art baselines in both effectiveness and efficiency.
近年来,由于高光谱遥感在农业、林业、地质勘探、环境监测和战场目标检测等方面具有出色的检测能力,高光谱异常检测已获得了大量研究。传统的异常检测方法忽略了高光谱图像(HSI)的非线性和复杂性,同时很少利用空间信息的有效性。此外,异常像素与背景混合在一起,这导致检测结果中的误报率较高。本文提出了一种基于高光谱深度网络的使用权重调整策略的异常检测器(WAHyperDNet),以规避上述问题。我们利用三维卷积而非二维卷积来获得处理高维数据的更好方法。在本研究中,通过HSI像素之间的相关性提取决定性的光谱-空间特征。此外,该方法中的特征权重基于绝对距离和光谱相似角自动生成,以描述背景像素与待测试像素之间的差异。在五个公共数据集上的实验结果表明,所提出的方法在有效性和效率方面均优于当前最先进的基线方法。