Suppr超能文献

基于权重调整策略的高光谱深度卷积异常检测

Hyperspectral deep convolution anomaly detection based on weight adjustment strategy.

作者信息

Chong Dan, Hu Bingliang, Gao Xiaohui, Gao Hao, Xia Pu, Wu Yinhua

出版信息

Appl Opt. 2020 Nov 1;59(31):9633-9642. doi: 10.1364/AO.400563.

Abstract

Hyperspectral anomaly detection has garnered much research in recent years due to the excellent detection ability of hyperspectral remote sensing in agriculture, forestry, geological surveys, environmental monitoring, and battlefield target detection. The traditional anomaly detection method ignores the non-linearity and complexity of the hyperspectral image (HSI), while making use of the effectiveness of spatial information rarely. Besides, the anomalous pixels and the background are mixed, which causes a higher false alarm rate in the detection result. In this paper, a hyperspectral deep net-based anomaly detector using weight adjustment strategy (WAHyperDNet) is proposed to circumvent the above issues. We leverage three-dimensional convolution instead of the two-dimensional convolution to get a better way of handling high-dimensional data. In this study, the determinative spectrum-spatial features are extracted across the correlation between HSI pixels. Moreover, feature weights in the method are automatically generated based on absolute distance and the spectral similarity angle to describe the differences between the background pixels and the pixels to be tested. Experimental results on five public datasets show that the proposed approach outperforms the state-of-the-art baselines in both effectiveness and efficiency.

摘要

近年来,由于高光谱遥感在农业、林业、地质勘探、环境监测和战场目标检测等方面具有出色的检测能力,高光谱异常检测已获得了大量研究。传统的异常检测方法忽略了高光谱图像(HSI)的非线性和复杂性,同时很少利用空间信息的有效性。此外,异常像素与背景混合在一起,这导致检测结果中的误报率较高。本文提出了一种基于高光谱深度网络的使用权重调整策略的异常检测器(WAHyperDNet),以规避上述问题。我们利用三维卷积而非二维卷积来获得处理高维数据的更好方法。在本研究中,通过HSI像素之间的相关性提取决定性的光谱-空间特征。此外,该方法中的特征权重基于绝对距离和光谱相似角自动生成,以描述背景像素与待测试像素之间的差异。在五个公共数据集上的实验结果表明,所提出的方法在有效性和效率方面均优于当前最先进的基线方法。

相似文献

3
Hyperspectral Anomaly Detection With Tensor Average Rank and Piecewise Smoothness Constraints.基于张量平均秩和分段光滑性约束的高光谱异常检测
IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):8679-8692. doi: 10.1109/TNNLS.2022.3152252. Epub 2023 Oct 27.
5
Hyperspectral Anomaly Detection Based on Adaptive Low-Rank Transformed Tensor.基于自适应低秩变换张量的高光谱异常检测
IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):9787-9799. doi: 10.1109/TNNLS.2023.3236641. Epub 2024 Jul 8.
7
Graph Evolution-Based Vertex Extraction for Hyperspectral Anomaly Detection.基于图演化的顶点提取用于高光谱异常检测
IEEE Trans Neural Netw Learn Syst. 2024 Dec;35(12):17372-17386. doi: 10.1109/TNNLS.2023.3303273. Epub 2024 Dec 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验