National Research Centre for the Working Environment (NFA), Copenhagen, Denmark.
Finnish Institute of Occupational Health (FIOH), Helsinki, Finland.
Nanotoxicology. 2021 Feb;15(1):96-113. doi: 10.1080/17435390.2020.1842932. Epub 2020 Nov 11.
Materials can be modified for improved functionality. Our aim was to test whether pulmonary toxicity of silica nanomaterials is increased by the introduction of: a) porosity; and b) surface doping with CuO; and whether c) these modifications act synergistically. Mice were exposed by intratracheal instillation and for some doses also oropharyngeal aspiration to: 1) solid silica 100 nm; 2) porous silica 100 nm; 3) porous silica 100 nm with CuO doping; 4) solid silica 300 nm; 5) porous silica 300 nm; 6) solid silica 300 nm with CuO doping; 7) porous silica 300 nm with CuO doping; 8) CuO nanoparticles 9.8 nm; or 9) carbon black Printex 90 as benchmark. Based on a pilot study, dose levels were between 0.5 and 162 µg/mouse (0.2 and 8.1 mg/kg bw). Endpoints included pulmonary inflammation (neutrophil numbers in bronchoalveolar fluid), acute phase response, histopathology, and genotoxicity assessed by the comet assay, micronucleus test, and the gamma-H2AX assay. The porous silica materials induced greater pulmonary inflammation than their solid counterparts. A similar pattern was seen for acute phase response induction and histologic changes. This could be explained by a higher specific surface area per mass unit for the most toxic particles. CuO doping further increased the acute phase response normalized according to the deposited surface area. We identified no consistent evidence of synergism between surface area and CuO doping. In conclusion, porosity and CuO doping each increased the toxicity of silica nanomaterials and there was no indication of synergy when the modifications co-occurred.
材料可以进行改性以提高其功能。我们的目的是测试以下两种情况是否会增加二氧化硅纳米材料的肺部毒性:a)多孔性;b)用氧化铜进行表面掺杂;以及 c)这些改性是否具有协同作用。通过气管内滴注和口咽吸入的方式,将小鼠暴露于以下物质中:1)100nm 固体二氧化硅;2)100nm 多孔二氧化硅;3)100nm 多孔二氧化硅掺杂氧化铜;4)300nm 固体二氧化硅;5)300nm 多孔二氧化硅;6)300nm 固体二氧化硅掺杂氧化铜;7)300nm 多孔二氧化硅掺杂氧化铜;8)9.8nm 的氧化铜纳米颗粒;或 9)作为基准的 Printex 90 碳黑。基于一项初步研究,剂量水平在 0.5 至 162µg/只小鼠之间(0.2 至 8.1mg/kg bw)。终点包括肺部炎症(支气管肺泡液中的中性粒细胞数量)、急性期反应、组织病理学以及彗星试验、微核试验和γ-H2AX 试验评估的遗传毒性。多孔二氧化硅材料引起的肺部炎症比其固体对应物更为严重。急性期反应诱导和组织学变化也呈现出类似的模式。这可以用单位质量比表面积最大的最毒颗粒来解释。氧化铜掺杂进一步增加了根据沉积表面积归一化的急性期反应。我们没有发现表面积和氧化铜掺杂之间存在协同作用的一致证据。总之,多孔性和氧化铜掺杂都增加了二氧化硅纳米材料的毒性,当这些改性同时存在时,没有协同作用的迹象。