Yamaguchi Terufumi, Akashi Nozomi, Nakajima Kohei, Kubota Hitoshi, Tsunegi Sumito, Taniguchi Tomohiro
National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba, Ibaraki, 305-8568, Japan.
Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Sci Rep. 2020 Nov 11;10(1):19536. doi: 10.1038/s41598-020-76142-x.
Physical reservoir computing is a type of recurrent neural network that applies the dynamical response from physical systems to information processing. However, the relation between computation performance and physical parameters/phenomena still remains unclear. This study reports our progress regarding the role of current-dependent magnetic damping in the computational performance of reservoir computing. The current-dependent relaxation dynamics of a magnetic vortex core results in an asymmetric memory function with respect to binary inputs. A fast relaxation caused by a large input leads to a fast fading of the input memory, whereas a slow relaxation by a small input enables the reservoir to keep the input memory for a relatively long time. As a result, a step-like dependence is found for the short-term memory and parity-check capacities on the pulse width of input data, where the capacities remain at 1.5 for a certain range of the pulse width, and drop to 1.0 for a long pulse-width limit. Both analytical and numerical analyses clarify that the step-like behavior can be attributed to the current-dependent relaxation time of the vortex core to a limit-cycle state.
物理水库计算是一种递归神经网络,它将物理系统的动态响应应用于信息处理。然而,计算性能与物理参数/现象之间的关系仍不明确。本研究报告了我们在电流相关磁阻尼对水库计算性能的作用方面取得的进展。磁涡核的电流相关弛豫动力学导致了关于二进制输入的不对称记忆函数。大输入引起的快速弛豫导致输入记忆的快速消退,而小输入引起的缓慢弛豫使水库能够将输入记忆保持相对较长的时间。结果,在输入数据的脉冲宽度方面,发现短期记忆和奇偶校验容量存在阶梯状依赖关系,其中在一定脉冲宽度范围内容量保持在1.5,而在长脉冲宽度极限下降至1.0。分析和数值分析均表明,这种阶梯状行为可归因于涡核到极限环状态的电流相关弛豫时间。