Suppr超能文献

光谱 X 射线投影图像的非线性分解正则化。

Regularization of nonlinear decomposition of spectral x-ray projection images.

机构信息

Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, Lyon, U1206, F69621, France.

出版信息

Med Phys. 2017 Sep;44(9):e174-e187. doi: 10.1002/mp.12283.

Abstract

PURPOSE

Exploiting the x-ray measurements obtained in different energy bins, spectral computed tomography (CT) has the ability to recover the 3-D description of a patient in a material basis. This may be achieved solving two subproblems, namely the material decomposition and the tomographic reconstruction problems. In this work, we address the material decomposition of spectral x-ray projection images, which is a nonlinear ill-posed problem.

METHODS

Our main contribution is to introduce a material-dependent spatial regularization in the projection domain. The decomposition problem is solved iteratively using a Gauss-Newton algorithm that can benefit from fast linear solvers. A Matlab implementation is available online. The proposed regularized weighted least squares Gauss-Newton algorithm (RWLS-GN) is validated on numerical simulations of a thorax phantom made of up to five materials (soft tissue, bone, lung, adipose tissue, and gadolinium), which is scanned with a 120 kV source and imaged by a 4-bin photon counting detector. To evaluate the method performance of our algorithm, different scenarios are created by varying the number of incident photons, the concentration of the marker and the configuration of the phantom. The RWLS-GN method is compared to the reference maximum likelihood Nelder-Mead algorithm (ML-NM). The convergence of the proposed method and its dependence on the regularization parameter are also studied.

RESULTS

We show that material decomposition is feasible with the proposed method and that it converges in few iterations. Material decomposition with ML-NM was very sensitive to noise, leading to decomposed images highly affected by noise, and artifacts even for the best case scenario. The proposed method was less sensitive to noise and improved contrast-to-noise ratio of the gadolinium image. Results were superior to those provided by ML-NM in terms of image quality and decomposition was 70 times faster. For the assessed experiments, material decomposition was possible with the proposed method when the number of incident photons was equal or larger than 10 and when the marker concentration was equal or larger than 0.03 g·cm .

CONCLUSIONS

The proposed method efficiently solves the nonlinear decomposition problem for spectral CT, which opens up new possibilities such as material-specific regularization in the projection domain and a parallelization framework, in which projections are solved in parallel.

摘要

目的

利用在不同能量-bin 中获得的 X 射线测量值,光谱 CT 能够以物质为基础恢复患者的 3D 描述。这可以通过解决两个子问题来实现,即物质分解和层析重建问题。在这项工作中,我们解决了光谱 X 射线投影图像的物质分解问题,这是一个非线性不适定问题。

方法

我们的主要贡献是在投影域中引入一个与物质相关的空间正则化。分解问题通过使用可以受益于快速线性求解器的高斯-牛顿算法进行迭代求解。Matlab 实现可在线获得。所提出的正则化加权最小二乘高斯-牛顿算法(RWLS-GN)在一个由五种材料(软组织、骨骼、肺、脂肪组织和钆)组成的胸部体模的数值模拟中得到验证,该体模使用 120kV 源扫描并由四-bin 光子计数探测器成像。为了评估我们算法的性能,通过改变入射光子的数量、标记的浓度和体模的配置来创建不同的场景。将 RWLS-GN 方法与参考最大似然 Nelder-Mead 算法(ML-NM)进行比较。还研究了所提出方法的收敛性及其对正则化参数的依赖性。

结果

我们表明,使用所提出的方法可以实现物质分解,并且它可以在几次迭代内收敛。使用 ML-NM 的物质分解对噪声非常敏感,导致分解图像受到噪声的严重影响,甚至在最佳情况下也会出现伪影。所提出的方法对噪声的敏感性较低,并提高了钆图像的对比噪声比。在所评估的实验中,当入射光子数等于或大于 10 且标记浓度等于或大于 0.03g·cm 时,所提出的方法可以实现物质分解。

结论

所提出的方法有效地解决了光谱 CT 的非线性分解问题,这为在投影域中进行特定物质的正则化以及并行化框架(其中投影并行求解)开辟了新的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验