Suppr超能文献

磷酸化依赖的表皮生长因子受体无规则羧基末端结构域构象

Phosphorylation-Dependent Conformations of the Disordered Carboxyl-Terminus Domain in the Epidermal Growth Factor Receptor.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States.

出版信息

J Phys Chem Lett. 2020 Dec 3;11(23):10037-10044. doi: 10.1021/acs.jpclett.0c02327. Epub 2020 Nov 12.

Abstract

The epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, regulates basic cellular functions and is a major target for anticancer therapeutics. The carboxyl-terminus domain is a disordered region of EGFR that contains the tyrosine residues, which undergo autophosphorylation followed by docking of signaling proteins. Local phosphorylation-dependent secondary structure has been identified and is thought to be associated with the signaling cascade. Deciphering and distinguishing the overall conformations, however, have been challenging because of the disordered nature of the carboxyl-terminus domain and resultant lack of well-defined three-dimensional structure for most of the domain. We investigated the overall conformational states of the isolated EGFR carboxyl-terminus domain using single-molecule Förster resonance energy transfer and coarse-grained simulations. Our results suggest that electrostatic interactions between charged residues emerge within the disordered domain upon phosphorylation, producing a looplike conformation. This conformation may enable binding of downstream signaling proteins and potentially reflect a general mechanism in which electrostatics transiently generate functional architectures in disordered regions of a well-folded protein.

摘要

表皮生长因子受体(EGFR)是一种受体酪氨酸激酶,调节基本细胞功能,是抗癌治疗的主要靶点。羧基末端结构域是 EGFR 的一个无规则区域,其中包含酪氨酸残基,这些残基经历自动磷酸化,然后与信号蛋白对接。已经确定了局部磷酸化依赖的二级结构,并且认为它与信号级联有关。然而,由于羧基末端结构域的无规则性质以及该结构域的大部分区域缺乏明确定义的三维结构,因此解析和区分整体构象一直具有挑战性。我们使用单分子Förster 共振能量转移和粗粒度模拟研究了分离的 EGFR 羧基末端结构域的整体构象状态。我们的结果表明,在磷酸化后,带电荷残基之间的静电相互作用出现在无规则区域内,产生类似环的构象。这种构象可能允许下游信号蛋白的结合,并可能反映出一种普遍机制,即静电在折叠良好的蛋白质的无规则区域中瞬时产生功能结构。

相似文献

1
Phosphorylation-Dependent Conformations of the Disordered Carboxyl-Terminus Domain in the Epidermal Growth Factor Receptor.
J Phys Chem Lett. 2020 Dec 3;11(23):10037-10044. doi: 10.1021/acs.jpclett.0c02327. Epub 2020 Nov 12.
2
Molecular determinants of epidermal growth factor binding: a molecular dynamics study.
PLoS One. 2013;8(1):e54136. doi: 10.1371/journal.pone.0054136. Epub 2013 Jan 24.
3
Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.
PLoS Comput Biol. 2014 Jan;10(1):e1003435. doi: 10.1371/journal.pcbi.1003435. Epub 2014 Jan 16.
7
Transitions to catalytically inactive conformations in EGFR kinase.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7270-5. doi: 10.1073/pnas.1220843110. Epub 2013 Apr 1.

引用本文的文献

1
Active regulation of the epidermal growth factor receptor by the membrane bilayer.
bioRxiv. 2025 Aug 18:2025.08.14.670284. doi: 10.1101/2025.08.14.670284.
2
Phosphorylation of disordered proteins tunes local and global intramolecular interactions.
Biophys J. 2024 Dec 3;123(23):4082-4096. doi: 10.1016/j.bpj.2024.10.021. Epub 2024 Nov 13.
4
Phosphorylation of disordered proteins tunes local and global intramolecular interactions.
bioRxiv. 2024 Jun 12:2024.06.10.598315. doi: 10.1101/2024.06.10.598315.
5
OpenABC enables flexible, simplified, and efficient GPU accelerated simulations of biomolecular condensates.
PLoS Comput Biol. 2023 Sep 11;19(9):e1011442. doi: 10.1371/journal.pcbi.1011442. eCollection 2023 Sep.
6
7
Ligand-induced transmembrane conformational coupling in monomeric EGFR.
Nat Commun. 2022 Jul 6;13(1):3709. doi: 10.1038/s41467-022-31299-z.
8
Expanding the Disorder-Function Paradigm in the C-Terminal Tails of Erbbs.
Biomolecules. 2021 Nov 14;11(11):1690. doi: 10.3390/biom11111690.
9
Regulation of EGFR signalling by palmitoylation and its role in tumorigenesis.
Open Biol. 2021 Oct;11(10):210033. doi: 10.1098/rsob.210033. Epub 2021 Oct 6.
10
Unifying coarse-grained force fields for folded and disordered proteins.
Curr Opin Struct Biol. 2022 Feb;72:63-70. doi: 10.1016/j.sbi.2021.08.006. Epub 2021 Sep 15.

本文引用的文献

1
Role of EGFR in the Nervous System.
Cells. 2020 Aug 12;9(8):1887. doi: 10.3390/cells9081887.
2
Disordered proteins follow diverse transition paths as they fold and bind to a partner.
Science. 2020 Jun 12;368(6496):1253-1257. doi: 10.1126/science.aba3854.
3
Single-Molecule FRET of Intrinsically Disordered Proteins.
Annu Rev Phys Chem. 2020 Apr 20;71:391-414. doi: 10.1146/annurev-physchem-012420-104917. Epub 2020 Feb 25.
4
Single-molecule FRET methods to study the dynamics of proteins at work.
Curr Opin Biomed Eng. 2019 Dec;12:8-17. doi: 10.1016/j.cobme.2019.08.007. Epub 2019 Aug 23.
5
Chemoenzymatic Semisynthesis of Proteins.
Chem Rev. 2020 Mar 25;120(6):3051-3126. doi: 10.1021/acs.chemrev.9b00450. Epub 2019 Nov 27.
6
Maximum Entropy Optimized Force Field for Intrinsically Disordered Proteins.
J Chem Theory Comput. 2020 Jan 14;16(1):773-781. doi: 10.1021/acs.jctc.9b00932. Epub 2019 Dec 13.
7
A view on drug resistance in cancer.
Nature. 2019 Nov;575(7782):299-309. doi: 10.1038/s41586-019-1730-1. Epub 2019 Nov 13.
8
Sequence Effects on Size, Shape, and Structural Heterogeneity in Intrinsically Disordered Proteins.
J Phys Chem B. 2019 Apr 25;123(16):3462-3474. doi: 10.1021/acs.jpcb.9b02575. Epub 2019 Apr 15.
10
Single Molecule FRET: A Powerful Tool to Study Intrinsically Disordered Proteins.
Biomolecules. 2018 Nov 8;8(4):140. doi: 10.3390/biom8040140.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验