Usher Emery T, Fossat Martin J, Holehouse Alex S
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.
bioRxiv. 2024 Jun 12:2024.06.10.598315. doi: 10.1101/2024.06.10.598315.
Protein post-translational modifications, such as phosphorylation, are important regulatory signals for diverse cellular functions. In particular, intrinsically disordered protein regions (IDRs) are subject to phosphorylation as a means to modulate their interactions and functions. Toward understanding the relationship between phosphorylation in IDRs and specific functional outcomes, we must consider how phosphorylation affects the IDR conformational ensemble. Various experimental techniques are suited to interrogate the features of IDR ensembles; molecular simulations can provide complementary insights and even illuminate ensemble features that may be experimentally inaccessible. Therefore, we sought to expand the tools available to study phosphorylated IDRs by all-atom Monte Carlo simulations. To this end, we implemented parameters for phosphoserine (pSer) and phosphothreonine (pThr) into the OPLS version of the continuum solvent model, ABSINTH, and assessed their performance in all-atom simulations compared to published findings. We simulated short (< 20 residues) and long (> 80 residues) phospho-IDRs that, collectively, survey both local and global phosphorylation-induced changes to the ensemble. Our simulations of four well-studied phospho-IDRs show near-quantitative agreement with published findings for these systems via metrics including changes to radius of gyration, transient helicity, and persistence length. We also leveraged the inherent advantage of sequence control in molecular simulations to explore the conformational effects of diverse combinations of phospho-sites in two multi-phosphorylated IDRs. Our results support and expand on prior observations that connect phosphorylation to changes in the IDR conformational ensemble. Herein, we describe phosphorylation as a means to alter sequence chemistry, net charge and charge patterning, and intramolecular interactions, which can collectively modulate the local and global IDR ensemble features.
蛋白质翻译后修饰,如磷酸化,是多种细胞功能的重要调控信号。特别是,内在无序蛋白区域(IDR)会发生磷酸化,以此来调节其相互作用和功能。为了理解IDR中磷酸化与特定功能结果之间的关系,我们必须考虑磷酸化如何影响IDR构象集合。各种实验技术适用于探究IDR集合的特征;分子模拟可以提供互补的见解,甚至揭示可能无法通过实验获取的集合特征。因此,我们试图通过全原子蒙特卡罗模拟来扩展研究磷酸化IDR的可用工具。为此,我们在连续溶剂模型ABSINTH的OPLS版本中实现了磷酸丝氨酸(pSer)和磷酸苏氨酸(pThr)的参数,并与已发表的研究结果相比,评估了它们在全原子模拟中的性能。我们模拟了短(<20个残基)和长(>80个残基)的磷酸化IDR,它们共同考察了局部和全局磷酸化诱导的集合变化。我们对四个经过充分研究的磷酸化IDR的模拟结果显示,通过包括回转半径、瞬时螺旋度和持久长度变化等指标,与这些系统已发表的研究结果几乎达到定量一致。我们还利用分子模拟中序列控制的固有优势,探索了两个多磷酸化IDR中不同磷酸化位点组合的构象效应。我们的结果支持并扩展了之前将磷酸化与IDR构象集合变化联系起来的观察结果。在此,我们将磷酸化描述为一种改变序列化学、净电荷和电荷模式以及分子内相互作用的手段,这些因素可以共同调节局部和全局IDR集合特征。