Crabb Emily, France-Lanord Arthur, Leverick Graham, Stephens Ryan, Shao-Horn Yang, Grossman Jeffrey C
Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
J Chem Theory Comput. 2020 Dec 8;16(12):7255-7266. doi: 10.1021/acs.jctc.0c00833. Epub 2020 Nov 12.
We examine the effect of equilibration methodology and sampling on molecular dynamics (AIMD) simulations of systems of common solvents and salts found in lithium-oxygen batteries. We compare two equilibration methods: (1) using an AIMD temperature ramp and (2) using a classical MD simulation followed by a short AIMD simulation both at the target simulation temperature of 300 K. We also compare two different classical all-atom force fields: PCFF+ and OPLS. By comparing the simulated association/dissociation behavior of lithium salts in different solvents with the experimental behavior, we find that equilibration with the classical force field that produces more physically accurate behavior in the classical MD simulations, namely, OPLS, also results in more physically accurate behavior in the AIMD runs compared to equilibration with PCFF+ or with the AIMD temperature ramp. Equilibration with OPLS outperforms even the pure AIMD equilibration because the classical MD equilibration is much longer than the AIMD equilibration (nanosecond vs picosecond timescales). These longer classical simulations allow the systems to find a more physically accurate initial configuration, and in the short simulation times available for the AIMD production runs, the initial configuration has a large impact on the system behavior. We also demonstrate the importance of averaging coordination number over multiple starting configurations and Li ions, as the majority of Li ions do not undergo a single association or dissociation event even in an ∼40 ps long simulation and thus do not sample a statistically significant portion of the phase space. These results show the importance of both equilibration method and sufficient independent sampling for extracting experimentally relevant quantities from AIMD simulations.
我们研究了平衡方法和采样对锂氧电池中常见溶剂和盐体系的分子动力学(AIMD)模拟的影响。我们比较了两种平衡方法:(1)使用AIMD温度斜坡,以及(2)在300 K的目标模拟温度下,先进行经典分子动力学(MD)模拟,然后进行短时间的AIMD模拟。我们还比较了两种不同的经典全原子力场:PCFF+和OPLS。通过将不同溶剂中锂盐的模拟缔合/解离行为与实验行为进行比较,我们发现,与使用PCFF+或AIMD温度斜坡进行平衡相比,在经典MD模拟中产生更符合物理实际行为的经典力场(即OPLS)进行平衡,在AIMD运行中也会产生更符合物理实际的行为。使用OPLS进行平衡甚至优于纯AIMD平衡,因为经典MD平衡的时间尺度比AIMD平衡长得多(纳秒与皮秒时间尺度)。这些更长的经典模拟使体系能够找到更符合物理实际的初始构型,并且在AIMD生产运行可用的短模拟时间内,初始构型对体系行为有很大影响。我们还证明了对多个起始构型和锂离子的配位数进行平均的重要性,因为即使在约40皮秒长的模拟中,大多数锂离子也不会经历单次缔合或解离事件,因此无法对相空间中具有统计意义的部分进行采样。这些结果表明了平衡方法和足够的独立采样对于从AIMD模拟中提取与实验相关的量的重要性。