State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China.
School of Medicine, Xiamen University, Xiamen, 361102, China.
Chemosphere. 2021 Jan;262:127878. doi: 10.1016/j.chemosphere.2020.127878. Epub 2020 Aug 6.
Reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress and mitochondrial dysfunction are known to affect the structural and functional damage in the neural system. Cadmium (Cd) is an environmental contaminant that is widely found in numerous environmental matrices and exhibits potential neurotoxic risk. However, it remains unclear how mitochondrial redox status induces, and whether Cd destabilizes, the ER-mitochondria crosstalk to have a toxic effect on the nervous system. Herein, in our present study, bioinformatics analysis revealed an important role of protein interaction and mitochondrial machinery in brain samples from Alzheimer's disease (AD) patients. Furthermore, we established a neurotoxicity model in vivo and in vitro induced by cadmium chloride (CdCl). We demonstrated that CdCl exposure disrupts the balance in mitochondrial redox represented by enhanced mitochondrial ROS (mitoROS) levels, which enhance mitofusin 2 (Mfn2) S-glutathionylation and interrupt the mitochondria-associated ER membranes (MAMs) for crosstalk between the ER and mitochondria to induce neuronal necroptosis. Mechanistically, it was shown that CdCl exposure significantly enhances the mitochondria-associated degradation (MAD) of Mfn2 via S-glutathionylation, which inhibits Mfn2 localization to the MAMs and subsequently leads to the formation of the RIPK1-RIPK3-p-MLKL complex (a key component of the necrosome) at MAMs, to promote neuronal necroptosis. Furthermore, the glutaredoxin 1 (Grx1) catalyzed and Mfn2 overexpression restored S-glu-Mfn2, MAMs perturbation, necrosome formation, and necroptosis in neurons induced by CdCl exposure in vitro. Moreover, the intervention with antioxidants to reduce mitochondrial redox, such as N-acetyl-l-cysteine (NAC) and mitochondria-targeted antioxidant Mito-TEMPO, reduced the S-glutathionylation of Mfn2 involved in the antagonism of CdCl-induced necroptosis and neurotoxicity in vivo and in vitro. Taken together, our results are the first time to demonstrate that S-glutathionylation of Mfn2 promotes neuronal necroptosis via disruption of ER-mitochondria crosstalk in CdCl-induced neurotoxicity, providing the novel mechanistic insight into how hazardous chemical-induced adverse effects in various organs and tissues could be interpreted by intraorganellar pathways under the control of MAMs components in neurons.
活性氧(ROS)介导的内质网(ER)应激和线粒体功能障碍已知会影响神经系统的结构和功能损伤。镉(Cd)是一种环境污染物,广泛存在于许多环境基质中,具有潜在的神经毒性风险。然而,目前尚不清楚线粒体氧化还原状态如何诱导,以及 Cd 是否会破坏 ER-线粒体串扰,从而对神经系统产生毒性作用。在这里,在我们目前的研究中,生物信息学分析揭示了蛋白相互作用和线粒体机制在阿尔茨海默病(AD)患者大脑样本中的重要作用。此外,我们建立了体内和体外的氯化镉(CdCl)诱导的神经毒性模型。我们证明,CdCl 暴露破坏了线粒体氧化还原平衡,表现为增强的线粒体 ROS(mitoROS)水平,增强了线粒体融合蛋白 2(Mfn2)的 S-谷胱甘肽化,并中断了 ER 和线粒体之间的线粒体相关内质网膜(MAMs)串扰,导致神经元坏死性凋亡。在机制上,研究表明,CdCl 暴露通过 S-谷胱甘肽化显著增强了 Mfn2 的线粒体相关降解(MAD),抑制了 Mfn2 向 MAMs 的定位,随后导致 RIPK1-RIPK3-p-MLKL 复合物(坏死体的关键组成部分)在 MAMs 上形成,从而促进神经元坏死性凋亡。此外,谷胱甘肽过氧化物酶 1(Grx1)催化和 Mfn2 过表达在体外恢复了 CdCl 暴露诱导的神经元中 S-谷氨酰化-Mfn2、MAMs 扰动、坏死体形成和坏死性凋亡。此外,用抗氧化剂干预来降低线粒体氧化还原,如 N-乙酰-L-半胱氨酸(NAC)和线粒体靶向抗氧化剂 Mito-TEMPO,减少了 CdCl 诱导的坏死性凋亡和神经毒性中涉及的 Mfn2 的 S-谷胱甘肽化,以及体内和体外的神经毒性。总之,我们的研究结果首次证明,Mfn2 的 S-谷胱甘肽化通过破坏 ER-线粒体串扰促进神经元坏死性凋亡,为危险化学物质引起的各种器官和组织的不良反应如何通过神经元中 MAMs 成分控制的细胞器途径来解释提供了新的机制见解。