Acuña Sebastian, Opstad Ida S, Godtliebsen Fred, Ahluwalia Balpreet Singh, Agarwal Krishna
Opt Express. 2020 Nov 9;28(23):34434-34449. doi: 10.1364/OE.409363.
Multiple signal classification algorithm (MUSICAL) exploits temporal fluctuations in fluorescence intensity to perform super-resolution microscopy by computing the value of a super-resolving indicator function across a fine sample grid. A key step in the algorithm is the separation of the measurements into signal and noise subspaces, based on a single user-specified parameter called the threshold. The resulting image is strongly sensitive to this parameter and the subjectivity arising from multiple practical factors makes it difficult to determine the right rule of selection. We address this issue by proposing soft thresholding schemes derived from a new generalized framework for indicator function design. We show that the new schemes significantly alleviate the subjectivity and sensitivity of hard thresholding while retaining the super-resolution ability. We also evaluate the trade-off between resolution and contrast and the out-of-focus light rejection using the various indicator functions. Through this, we create significant new insights into the use and further optimization of MUSICAL for a wide range of practical scenarios.
多重信号分类算法(MUSICAL)利用荧光强度的时间波动,通过在精细的样本网格上计算超分辨指标函数的值来执行超分辨显微镜成像。该算法的一个关键步骤是基于一个称为阈值的单一用户指定参数,将测量值分离为信号子空间和噪声子空间。所得图像对该参数非常敏感,并且多个实际因素引起的主观性使得难以确定正确的选择规则。我们通过提出从用于指标函数设计的新广义框架派生的软阈值方案来解决这个问题。我们表明,新方案在保留超分辨能力的同时,显著减轻了硬阈值的主观性和敏感性。我们还使用各种指标函数评估分辨率和对比度之间的权衡以及离焦光抑制。通过这一点,我们为在广泛的实际场景中使用和进一步优化MUSICAL创造了重要的新见解。