Jadhav Suyog, Acuña Sebastian, Opstad Ida S, Singh Ahluwalia Balpreet, Agarwal Krishna, Prasad Dilip K
Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India.
Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway.
Biomed Opt Express. 2020 Dec 8;12(1):191-210. doi: 10.1364/BOE.410617. eCollection 2021 Jan 1.
Image denoising or artefact removal using deep learning is possible in the availability of supervised training dataset acquired in real experiments or synthesized using known noise models. Neither of the conditions can be fulfilled for nanoscopy (super-resolution optical microscopy) images that are generated from microscopy videos through statistical analysis techniques. Due to several physical constraints, a supervised dataset cannot be measured. Further, the non-linear spatio-temporal mixing of data and valuable statistics of fluctuations from fluorescent molecules that compete with noise statistics. Therefore, noise or artefact models in nanoscopy images cannot be explicitly learned. Here, we propose a robust and versatile simulation-supervised training approach of deep learning auto-encoder architectures for the highly challenging nanoscopy images of sub-cellular structures inside biological samples. We show the proof of concept for one nanoscopy method and investigate the scope of generalizability across structures, and nanoscopy algorithms not included during simulation-supervised training. We also investigate a variety of loss functions and learning models and discuss the limitation of existing performance metrics for nanoscopy images. We generate valuable insights for this highly challenging and unsolved problem in nanoscopy, and set the foundation for the application of deep learning problems in nanoscopy for life sciences.
在通过真实实验获取或使用已知噪声模型合成的监督训练数据集可用的情况下,使用深度学习进行图像去噪或伪影去除是可行的。对于通过统计分析技术从显微镜视频生成的纳米显微镜(超分辨率光学显微镜)图像,这两个条件都无法满足。由于几个物理限制,无法测量监督数据集。此外,数据的非线性时空混合以及来自荧光分子的波动的有价值统计与噪声统计相互竞争。因此,无法明确学习纳米显微镜图像中的噪声或伪影模型。在此,我们针对生物样本内亚细胞结构的极具挑战性的纳米显微镜图像,提出了一种深度学习自动编码器架构的强大且通用的模拟监督训练方法。我们展示了一种纳米显微镜方法的概念验证,并研究了跨结构以及模拟监督训练期间未包括的纳米显微镜算法的可推广范围。我们还研究了各种损失函数和学习模型,并讨论了纳米显微镜图像现有性能指标的局限性。我们为纳米显微镜中这个极具挑战性且未解决的问题产生了有价值的见解,并为深度学习问题在生命科学纳米显微镜中的应用奠定了基础。